def test_readAndParseTbuff(self): '''flaghelper: compare the read and parse and apply tbuff''' print '' # MJD in seconds of timeranges are these # <startTime>4891227930515540000 <endTime>4891227932453838000 # <startTime>4891228473545856000 <endTime>4891228473731891000 # <startTime>4891226924455911000 <endTime>4891226927502314000 # <startTime>4891228838164987000 <endTime>4891228838418996000 # <startTime>4891228609440808000 <endTime>4891228612489617000 online = ["antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'", "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'", "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'", "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'", "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'"] myinput = "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'\n"\ "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'\n"\ "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'\n"\ "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'\n"\ "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" filename1 = 'flaghelperonline2.txt' create_input(myinput, filename1) # First timerange from online before padding origt = timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454' # Apply tbuff to timeranges timebuffer = 1.1 dlist1 = fh.readAndParse([filename1], tbuff=timebuffer) self.assertEqual(len(dlist1), 5) # Get the first padded timerange from output padt = dlist1[0]['timerange'] # Revert the tbuff application manually t0,t1 = padt.split('~',1) startTime = qa.totime(t0)['value'] startTimeSec = float((startTime * 24 * 3600) + timebuffer) startTimeSec = qa.quantity(startTimeSec, 's') paddedT0 = qa.time(startTimeSec,form='ymd',prec=9)[0] # end time endTime = qa.totime(t1)['value'] endTimeSec = float((endTime * 24 * 3600) - timebuffer) endTimeSec = qa.quantity(endTimeSec, 's') paddedT1 = qa.time(endTimeSec,form='ymd',prec=9)[0] newtimerange = paddedT0+'~'+paddedT1 # Compare with the original self.assertEqual(origt, newtimerange) # Compare with original values from Flag.xml xmlt0 = float(4891227930515540000) * 1.0E-9 xmlt1 = float(4891227932453838000) * 1.0E-9 self.assertAlmostEqual(xmlt0, startTimeSec['value'], places=3) self.assertAlmostEqual(xmlt1, endTimeSec['value'], places=3)
def format_coord(x, y): col = np.argmin(np.absolute(tim - x)) row = np.argmin(np.absolute(freqghz - y)) if col >= 0 and col < ntim and row >= 0 and row < nfreq: timv = tim[col] timstr = qa.time(qa.quantity(timv, 's'), form='clean', prec=9)[0] flux = spec_plt[row, col] return 'time {0} = {1}, freq = {2:.3f} GHz, flux = {3:.2f} Jy'.format( col, timstr, y, flux) else: return 'x = {0}, y = {1:.3f}'.format(x, y)
def read_msinfo(vis=None, msinfofile=None): # read MS information # msinfo = dict.fromkeys(['vis', 'scans', 'fieldids', 'btimes', 'btimestr', \ 'inttimes', 'ras', 'decs']) ms.open(vis) scans = ms.getscansummary() scanids = sorted(scans.keys(), key=lambda x: int(x)) nscanid = len(scanids) btimes = [] btimestr = [] etimes = [] fieldids = [] inttimes = [] dirs = [] ras = [] decs = [] for i in range(nscanid): btimes.append(scans[scanids[i]]['0']['BeginTime']) etimes.append(scans[scanids[i]]['0']['EndTime']) fieldid = scans[scanids[i]]['0']['FieldId'] fieldids.append(fieldid) dir = ms.getfielddirmeas('PHASE_DIR', fieldid) dirs.append(dir) ras.append(dir['m0']) decs.append(dir['m1']) inttimes.append(scans[scanids[i]]['0']['IntegrationTime']) ms.close() btimestr = [qa.time(qa.quantity(btimes[i], 'd'), form='fits', prec=10)[0] \ for i in range(nscanid)] msinfo['vis'] = vis msinfo['scans'] = scans msinfo['fieldids'] = fieldids msinfo['btimes'] = btimes msinfo['btimestr'] = btimestr msinfo['inttimes'] = inttimes msinfo['ras'] = ras msinfo['decs'] = decs if msinfofile: np.savez(msinfofile, vis=vis, scans=scans, fieldids=fieldids, \ btimes=btimes, btimestr=btimestr, inttimes=inttimes, \ ras=ras, decs=decs) return msinfo
def subvs2(vis=None, outputvis=None, timerange='', spw='', mode=None, subtime1=None, subtime2=None, smoothaxis=None, smoothtype=None, smoothwidth=None, splitsel=None, reverse=None, overwrite=None): """Perform vector subtraction for visibilities Keyword arguments: vis -- Name of input visibility file (MS) default: none; example: vis='ngc5921.ms' outputvis -- Name of output uv-subtracted visibility file (MS) default: none; example: outputvis='ngc5921_src.ms' timerange -- Time range of performing the UV subtraction: default='' means all times. examples: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' spw -- Select spectral window/channel. default = '' all the spectral channels. Example: spw='0:1~20' mode -- operation mode default 'linear' mode = 'linear': use a linear fit for the background to be subtracted mode = 'lowpass': act as a lowpass filter---smooth the data using different smooth types and window sizes. Can be performed along either time or frequency axis mode = 'highpass': act as a highpass filter---smooth the data first, and subtract the smoothed data from the original. Can be performed along either time or frequency axis mode = 'linear' expandable parameters: subtime1 -- Time range 1 of the background to be subtracted from the data default='' means all times. format: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' subtime2 -- Time range 2 of the backgroud to be subtracted from the data default='' means all times. examples: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' mode = 'lowpass' or 'highpass' expandable parameters: smoothaxis -- axis of smooth Default: 'time' smoothaxis = 'time': smooth is along the time axis smoothaxis = 'freq': smooth is along the frequency axis smoothtype -- type of the smooth depending on the convolving kernel Default: 'flat' smoothtype = 'flat': convolving kernel is a flat rectangle, equivalent to a boxcar moving smooth smoothtype = 'hanning': Hanning smooth kernel. See numpy.hanning smoothtype = 'hamming': Hamming smooth kernel. See numpy.hamming smoothtype = 'bartlett': Bartlett smooth kernel. See numpy.bartlett smoothtype = 'blackman': Blackman smooth kernel. See numpy.blackman smoothwidth -- width of the smooth kernel Default: 5 Examples: smoothwidth=5, meaning the width is 5 pixels splitsel -- True or False. default = False. If splitsel = False, then the entire input measurement set is copied as the output measurement set (outputvis), with background subtracted at selected timerange and spectral channels. If splitsel = True,then only the selected timerange and spectral channels are copied into the output measurement set (outputvis). reverse -- True or False. default = False. If reverse = False, then the times indicated by subtime1 and/or subtime2 are treated as background and subtracted; If reverse = True, then reverse the sign of the background-subtracted data. The option can be used for mapping absorptive structure. overwrite -- True or False. default = False. If overwrite = True and outputvis already exists, the selected subtime and spw in the output measurment set will be replaced with background subtracted visibilities """ # check the visbility ms casalog.post('input parameters:') casalog.post('vis: ' + vis) casalog.post('outputvis: ' + outputvis) casalog.post('smoothaxis: ' + smoothaxis) casalog.post('smoothtype: ' + smoothtype) casalog.post('smoothwidth: ' + str(smoothwidth)) if not outputvis or outputvis.isspace(): raise (ValueError, 'Please specify outputvis') if os.path.exists(outputvis): if overwrite: print( "The already existing output measurement set will be updated.") else: raise (ValueError, "Output MS %s already exists - will not overwrite." % outputvis) else: if not splitsel: shutil.copytree(vis, outputvis) else: ms.open(vis, nomodify=True) ms.split(outputvis, spw=spw, time=timerange, whichcol='DATA') ms.close() if timerange and (type(timerange) == str): [btimeo, etimeo] = timerange.split('~') btimeosec = qa.getvalue(qa.convert(qa.totime(btimeo), 's')) etimeosec = qa.getvalue(qa.convert(qa.totime(etimeo), 's')) timebinosec = etimeosec - btimeosec if timebinosec < 0: raise Exception( 'Negative timebin! Please check the "timerange" parameter.') casalog.post('Selected timerange: ' + timerange + ' as the time for UV subtraction.') else: casalog.post( 'Output timerange not specified, using the entire timerange') if spw and (type(spw) == str): spwlist = spw.split(';') else: casalog.post('spw not specified, use all frequency channels') # read the output data datams = mstool() datams.open(outputvis, nomodify=False) datamsmd = msmdtool() datamsmd.open(outputvis) spwinfod = datams.getspectralwindowinfo() spwinfok = spwinfod.keys() spwinfok.sort(key=int) spwinfol = [spwinfod[k] for k in spwinfok] for s, spi in enumerate(spwinfol): print('processing spectral window {}'.format(spi['SpectralWindowId'])) datams.selectinit(reset=True) staql = {'time': '', 'spw': ''} if not splitsel: # outputvis is identical to input visibility, do the selection if timerange and (type(timerange == str)): staql['time'] = timerange if spw and (type(spw) == str): staql['spw'] = spwlist[s] if not spw and not timerange: # data selection is not made print('selecting all spws and times') staql['spw'] = str(spi['SpectralWindowId']) else: # outputvis is splitted, selections have already applied, select all the data print('split the selected spws and times') staql['spw'] = str(spi['SpectralWindowId']) datams.msselect(staql) orec = datams.getdata(['data', 'time', 'axis_info'], ifraxis=True) npol, nchan, nbl, ntim = orec['data'].shape print('dimension of output data', orec['data'].shape) casalog.post('Number of baselines: ' + str(nbl)) casalog.post('Number of spectral channels: ' + str(nchan)) casalog.post('Number of time pixels: ' + str(ntim)) try: if mode == 'linear': # define and check the background time ranges if subtime1 and (type(subtime1) == str): [bsubtime1, esubtime1] = subtime1.split('~') bsubtime1sec = qa.getvalue( qa.convert(qa.totime(bsubtime1), 's')) esubtime1sec = qa.getvalue( qa.convert(qa.totime(esubtime1), 's')) timebin1sec = esubtime1sec - bsubtime1sec if timebin1sec < 0: raise Exception( 'Negative timebin! Please check the "subtime1" parameter.' ) casalog.post('Selected timerange 1: ' + subtime1 + ' as background for uv subtraction.') else: raise Exception( 'Please enter at least one timerange as the background' ) if subtime2 and (type(subtime2) == str): [bsubtime2, esubtime2] = subtime2.split('~') bsubtime2sec = qa.getvalue( qa.convert(qa.totime(bsubtime2), 's')) esubtime2sec = qa.getvalue( qa.convert(qa.totime(esubtime2), 's')) timebin2sec = esubtime2sec - bsubtime2sec if timebin2sec < 0: raise Exception( 'Negative timebin! Please check the "subtime2" parameter.' ) timebin2 = str(timebin2sec) + 's' casalog.post('Selected timerange 2: ' + subtime2 + ' as background for uv subtraction.') # plus 1s is to ensure averaging over the entire timerange else: casalog.post( 'Timerange 2 not selected, using only timerange 1 as background' ) # Select the background indicated by subtime1 ms.open(vis, nomodify=True) # Select the spw id # ms.msselect({'time': subtime1}) staql0 = {'time': subtime1, 'spw': ''} if spw and (type(spw) == str): staql0['spw'] = spwlist[s] else: staql0['spw'] = staql['spw'] ms.msselect(staql0) rec1 = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) # print('shape of the frequency matrix ',rec1['axis_info']['freq_axis']['chan_freq'].shape) sz1 = rec1['data'].shape print('dimension of selected background 1', rec1['data'].shape) # the data shape is (n_pol,n_channel,n_baseline,n_time), no need to reshape # rec1['data']=rec1['data'].reshape(sz1[0],sz1[1],sz1[2],nspw,sz1[3]/nspw,order='F') # print('reshaped rec1 ', rec1['data'].shape) rec1avg = np.average(rec1['data'], axis=3) casalog.post('Averaging the visibilities in subtime1: ' + subtime1) ms.close() if subtime2 and (type(subtime2) == str): ms.open(vis, nomodify=True) # Select the spw id staql0 = {'time': subtime2, 'spw': ''} if spw and (type(spw) == str): staql0['spw'] = spwlist[s] else: staql0['spw'] = staql['spw'] ms.msselect(staql0) rec2 = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) sz2 = rec2['data'].shape print('dimension of selected background 2', rec2['data'].shape) # rec2['data']=rec2['data'].reshape(sz2[0],sz2[1],sz2[2],nspw,sz2[3]/nspw,order='F') # print('reshaped rec1 ', rec2['data'].shape) rec2avg = np.average(rec2['data'], axis=3) ms.close() casalog.post('Averaged the visibilities in subtime2: ' + subtime2) if subtime1 and (not subtime2): casalog.post( 'Only "subtime1" is defined, subtracting background defined in subtime1: ' + subtime1) t1 = (np.amax(rec1['time']) + np.amin(rec1['time'])) / 2. print('t1: ', qa.time(qa.quantity(t1, 's'), form='ymd', prec=10)) for i in range(ntim): orec['data'][:, :, :, i] -= rec1avg if reverse: orec['data'][:, :, :, i] = -orec['data'][:, :, :, i] if subtime1 and subtime2 and (type(subtime2) == str): casalog.post( 'Both subtime1 and subtime2 are specified, doing linear interpolation between "subtime1" and "subtime2"' ) t1 = (np.amax(rec1['time']) + np.amin(rec1['time'])) / 2. t2 = (np.amax(rec2['time']) + np.amin(rec2['time'])) / 2. touts = orec['time'] print('t1: ', qa.time(qa.quantity(t1, 's'), form='ymd', prec=10)) print('t2: ', qa.time(qa.quantity(t2, 's'), form='ymd', prec=10)) for i in range(ntim): tout = touts[i] if tout > np.amax([t1, t2]): tout = np.amax([t1, t2]) elif tout < np.amin([t1, t2]): tout = np.amin([t1, t2]) orec['data'][:, :, :, i] -= (rec2avg - rec1avg) * ( tout - t1) / (t2 - t1) + rec1avg if reverse: orec['data'][:, :, :, i] = -orec['data'][:, :, :, i] elif mode == 'highpass': if smoothtype != 'flat' and smoothtype != 'hanning' and smoothtype != 'hamming' and smoothtype != 'bartlett' and smoothtype != 'blackman': raise Exception('Unknown smoothtype ' + str(smoothtype)) if smoothaxis == 'time': if smoothwidth <= 0 or smoothwidth >= ntim: raise Exception( 'Specified smooth width is <=0 or >= the total number of ' + smoothaxis) else: for i in range(orec['data'].shape[0]): for j in range(nchan): for k in range(nbl): orec['data'][i, j, k, :] -= signalsmooth.smooth( orec['data'][i, j, k, :], smoothwidth, smoothtype) if smoothaxis == 'freq': if smoothwidth <= 0 or smoothwidth >= nchan: raise Exception( 'Specified smooth width is <=0 or >= the total number of ' + smoothaxis) else: for i in range(orec['data'].shape[0]): for j in range(nbl): for k in range(ntim): orec['data'][i, :, j, k] -= signalsmooth.smooth( orec['data'][i, :, j, k], smoothwidth, smoothtype) elif mode == 'lowpass': if smoothtype != 'flat' and smoothtype != 'hanning' and smoothtype != 'hamming' and smoothtype != 'bartlett' and smoothtype != 'blackman': raise Exception('Unknown smoothtype ' + str(smoothtype)) if smoothaxis == 'time': if smoothwidth <= 0 or smoothwidth >= ntim: raise Exception( 'Specified smooth width is <=0 or >= the total number of ' + smoothaxis) else: for i in range(orec['data'].shape[0]): for j in range(nchan): for k in range(nbl): orec['data'][i, j, k, :] = signalsmooth.smooth( orec['data'][i, j, k, :], smoothwidth, smoothtype) if smoothaxis == 'freq': if smoothwidth <= 0 or smoothwidth >= nchan: raise Exception( 'Specified smooth width is <=0 or >= the total number of ' + smoothaxis) else: for i in range(orec['data'].shape[0]): for j in range(nbl): for k in range(ntim): orec['data'][i, :, j, k] = signalsmooth.smooth( orec['data'][i, :, j, k], smoothwidth, smoothtype) else: raise Exception('Unknown mode' + str(mode)) except Exception as instance: print('*** Error ***', instance) # orec['data']=orec['data'].reshape(szo[0],szo[1],szo[2],szo[3],order='F') # put the modified data back into the output visibility set del orec['time'] del orec['axis_info'] # ms.open(outputvis,nomodify=False) # if not splitsel: # outputvis is identical to input visibility, do the selection # if timerange and (type(timerange==str)): # datams.msselect({'time':timerange}) # if spw and (type(spw)==str): # datams.selectinit(datadescid=int(spwid)) # nchan=int(echan)-int(bchan)+1 # datams.selectchannel(nchan,int(bchan),1,1) # if not spw and not timerange: # data selection is not made # datams.selectinit(datadescid=0) # else: # outputvis is splitted, selections have already applied, select all the data # datams.selectinit(datadescid=0) datams.putdata(orec) datams.close() datamsmd.done()
def ptclean(vis, imageprefix, ncpu, twidth, doreg, overwrite, ephemfile, msinfofile, outlierfile, field, spw, selectdata, timerange, uvrange, antenna, scan, observation, intent, mode, resmooth, gridmode, wprojplanes, facets, cfcache, rotpainc, painc, aterm, psterm, mterm, wbawp, conjbeams, epjtable, interpolation, niter, gain, threshold, psfmode, imagermode, ftmachine, mosweight, scaletype, multiscale, negcomponent, smallscalebias, interactive, mask, nchan, start, width, outframe, veltype, imsize, cell, phasecenter, restfreq, stokes, weighting, robust, uvtaper, outertaper, innertaper, modelimage, restoringbeam, pbcor, minpb, usescratch, noise, npixels, npercycle, cyclefactor, cyclespeedup, nterms, reffreq, chaniter, flatnoise, allowchunk): if not (type(ncpu) is int): casalog.post('ncpu should be an integer') ncpu = 8 if doreg: # check if ephemfile and msinfofile exist try: ephem = vla_prep.read_horizons(ephemfile=ephemfile) except ValueError: print("error in reading ephemeris file") if not os.path.isfile(msinfofile): print("msinfofile does not exist!") else: ephem = None # get number of time pixels ms.open(vis) ms.selectinit() timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True) tim = timfreq['time'] # dt = tim[1]-tim[0] #need to change to median of all time intervals dt = np.median(np.diff(tim)) freq = timfreq['axis_info']['freq_axis']['chan_freq'].flatten() ms.close() if twidth < 1 or twidth > len(tim): casalog.post( 'twidth not between 1 and # of time pixels in the dataset. Change to 1' ) twidth = 1 # find out the start and end time index according to the parameter timerange # if not defined (empty string), use start and end from the entire time of the ms if not timerange: btidx = 0 etidx = len(tim) - 1 else: try: (tstart, tend) = timerange.split('~') bt_s = qa.convert(qa.quantity(tstart, 's'), 's')['value'] et_s = qa.convert(qa.quantity(tend, 's'), 's')['value'] # only time is given but not date, add the date (at 0 UT) from the first record if bt_s < 86400. or et_s < 86400.: bt_s += np.fix( qa.convert(qa.quantity(tim[0], 's'), 'd')['value']) * 86400. et_s += np.fix( qa.convert(qa.quantity(tim[0], 's'), 'd')['value']) * 86400. btidx = np.argmin(np.abs(tim - bt_s)) etidx = np.argmin(np.abs(tim - et_s)) # make the indice back to those bracket by the timerange if tim[btidx] < bt_s: btidx += 1 if tim[etidx] > et_s: etidx -= 1 if etidx <= btidx: print "ending time must be greater than starting time" print "reinitiating to the entire time range" btidx = 0 etidx = len(tim) - 1 except ValueError: print "keyword 'timerange' has a wrong format" btstr = qa.time(qa.quantity(tim[btidx], 's'), prec=9, form='fits')[0] etstr = qa.time(qa.quantity(tim[etidx], 's'), prec=9, form='fits')[0] iterable = range(btidx, etidx + 1, twidth) print 'First time pixel: ' + btstr print 'Last time pixel: ' + etstr print str(len(iterable)) + ' images to clean...' res = [] # partition clnpart = partial( clean_iter, tim, freq, vis, imageprefix, ncpu, twidth, doreg, overwrite, ephemfile, ephem, msinfofile, outlierfile, field, spw, selectdata, uvrange, antenna, scan, observation, intent, mode, resmooth, gridmode, wprojplanes, facets, cfcache, rotpainc, painc, aterm, psterm, mterm, wbawp, conjbeams, epjtable, interpolation, niter, gain, threshold, psfmode, imagermode, ftmachine, mosweight, scaletype, multiscale, negcomponent, smallscalebias, interactive, mask, nchan, start, width, outframe, veltype, imsize, cell, phasecenter, restfreq, stokes, weighting, robust, uvtaper, outertaper, innertaper, modelimage, restoringbeam, pbcor, minpb, usescratch, noise, npixels, npercycle, cyclefactor, cyclespeedup, nterms, reffreq, chaniter, flatnoise, allowchunk) timelapse = 0 t0 = time() # parallelization para = 1 if para: casalog.post('Perform clean in parallel ...') pool = mp.Pool(ncpu) # res = pool.map_async(clnpart, iterable) res = pool.map(clnpart, iterable) pool.close() pool.join() else: for i in iterable: res.append(clnpart(i)) t1 = time() timelapse = t1 - t0 print 'It took %f secs to complete' % timelapse # repackage this into a single dictionary results = {'succeeded': [], 'timestamps': [], 'imagenames': []} for r in res: results['succeeded'].append(r[0]) results['timestamps'].append(r[1]) results['imagenames'].append(r[2]) return results
def clean_iter(tim, freq, vis, imageprefix, ncpu, twidth, doreg, overwrite, ephemfile, ephem, msinfofile, outlierfile, field, spw, selectdata, uvrange, antenna, scan, observation, intent, mode, resmooth, gridmode, wprojplanes, facets, cfcache, rotpainc, painc, aterm, psterm, mterm, wbawp, conjbeams, epjtable, interpolation, niter, gain, threshold, psfmode, imagermode, ftmachine, mosweight, scaletype, multiscale, negcomponent, smallscalebias, interactive, mask, nchan, start, width, outframe, veltype, imsize, cell, phasecenter, restfreq, stokes, weighting, robust, uvtaper, outertaper, innertaper, modelimage, restoringbeam, pbcor, minpb, usescratch, noise, npixels, npercycle, cyclefactor, cyclespeedup, nterms, reffreq, chaniter, flatnoise, allowchunk, btidx): from taskinit import ms from taskinit import qa # from __casac__.quanta import quanta as qa from __main__ import default, inp from clean import clean bt = btidx # 0 if bt + twidth < len(tim) - 1: et = btidx + twidth - 1 else: et = len(tim) - 1 # tim_d = tim/3600./24.-np.fix(tim/3600./24.) if bt == 0: bt_d = tim[bt] - ((tim[bt + 1] - tim[bt]) / 2) else: bt_d = tim[bt] - ((tim[bt] - tim[bt - 1]) / 2) if et == (len(tim) - 1) or et == -1: et_d = tim[et] + ((tim[et] - tim[et - 1]) / 2) else: et_d = tim[et] + ((tim[et + 1] - tim[et]) / 2) # # bt_d=tim[bt] # et_d=tim[et]+0.005 timerange = qa.time(qa.quantity(bt_d, 's'), prec=9)[0] + '~' + \ qa.time(qa.quantity(et_d, 's'), prec=9)[0] tmid = (bt_d + et_d) / 2. btstr = qa.time(qa.quantity(bt_d, 's'), prec=9, form='fits')[0] print 'cleaning timerange: ' + timerange try: image0 = btstr.replace(':', '').replace('-', '') imname = imageprefix + image0 if overwrite or (len(glob.glob(imname + '*')) == 0): # inp(taskname = 'clean') os.system('rm -rf {}*'.format(imname)) clean(vis=vis, imagename=imname, outlierfile=outlierfile, field=field, spw=spw, selectdata=selectdata, timerange=timerange, uvrange=uvrange, antenna=antenna, scan=scan, observation=str(observation), intent=intent, mode=mode, resmooth=resmooth, gridmode=gridmode, wprojplanes=wprojplanes, facets=facets, cfcache=cfcache, rotpainc=rotpainc, painc=painc, psterm=psterm, aterm=aterm, mterm=mterm, wbawp=wbawp, conjbeams=conjbeams, epjtable=epjtable, interpolation=interpolation, niter=niter, gain=gain, threshold=threshold, psfmode=psfmode, imagermode=imagermode, ftmachine=ftmachine, mosweight=mosweight, scaletype=scaletype, multiscale=multiscale, negcomponent=negcomponent, smallscalebias=smallscalebias, interactive=interactive, mask=mask, nchan=nchan, start=start, width=width, outframe=outframe, veltype=veltype, imsize=imsize, cell=cell, phasecenter=phasecenter, restfreq=restfreq, stokes=stokes, weighting=weighting, robust=robust, uvtaper=uvtaper, outertaper=outertaper, innertaper=innertaper, modelimage=modelimage, restoringbeam=restoringbeam, pbcor=pbcor, minpb=minpb, usescratch=usescratch, noise=noise, npixels=npixels, npercycle=npercycle, cyclefactor=cyclefactor, cyclespeedup=cyclespeedup, nterms=nterms, reffreq=reffreq, chaniter=chaniter, flatnoise=flatnoise, allowchunk=False) clnjunks = ['.flux', '.mask', '.model', '.psf', '.residual'] for clnjunk in clnjunks: if os.path.exists(imname + clnjunk): shutil.rmtree(imname + clnjunk) else: print imname + ' existed. Clean task aborted.' if doreg and not os.path.isfile(imname + '.fits'): # check if ephemfile and msinfofile exist if not ephem: print("ephemeris info does not exist!") return reftime = [timerange] helio = vla_prep.ephem_to_helio(msinfo=msinfofile, ephem=ephem, reftime=reftime) imagefile = [imname + '.image'] fitsfile = [imname + '.fits'] vla_prep.imreg(imagefile=imagefile, fitsfile=fitsfile, helio=helio, toTb=False, scl100=True) if os.path.exists(imname + '.fits'): return [True, btstr, imname + '.fits'] else: return [False, btstr, ''] else: if os.path.exists(imname + '.image'): return [True, btstr, imname + '.image'] else: return [False, btstr, ''] except: print('error in processing image: ' + btstr) return [False, btstr, '']
def subvs(vis='', outputvis='', timerange='', spw='', timoffset=4, windowlen=5, windowtype='hamming', splitsel=True, reverse=False, overwrite=False): """Perform vector subtraction for visibilities Keyword arguments: vis -- Name of input visibility file (MS) default: none; example: vis='ngc5921.ms' outputvis -- Name of output uv-subtracted visibility file (MS) default: none; example: outputvis='ngc5921_src.ms' timerange -- Time range of performing the UV subtraction: default='' means all times. examples: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' spw -- Select spectral window/channel. windowlen -- Specify the width of window for smoothing windowtype --The type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. splitsel -- True or False. default = False. If splitsel = False, then the entire input measurement set is copied as the output measurement set (outputvis), with background subtracted at selected timerange and spectral channels. If splitsel = True,then only the selected timerange and spectral channels are copied into the output measurement set (outputvis). reverse -- True or False. default = False. If reverse = False, then the times indicated by subtime1 and/or subtime2 are treated as background and subtracted; If reverse = True, then reverse the sign of the background-subtracted data. The option can be used for mapping absorptive structure. overwrite -- True or False. default = False. If overwrite = True and outputvis already exists, the selected subtime and spw in the output measurment set will be replaced with background subtracted visibilities """ # Get the time and frequency axis of the input ms # Open the ms and plot dynamic spectrum print 'using window length: ', windowlen print 'using window type: ', windowtype ms.open(vis, nomodify=True) # ms.selectinit(datadescid=0) timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True) tim = timfreq['time'] # check timerange input; default: entire timerange if timerange and (type(timerange) == str): [btimeo, etimeo] = timerange.split('~') btimeosec = qa.getvalue(qa.convert(qa.totime(btimeo), 's')) etimeosec = qa.getvalue(qa.convert(qa.totime(etimeo), 's')) timebinosec = etimeosec - btimeosec if timebinosec < 0: raise Exception, 'Negative timebin! Please check the "timerange" parameter.' else: casalog.post('Selected timerange: ' + timerange + ' as the time for UV subtraction.') else: casalog.post( 'Output timerange not specified, using the entire timerange') timerange = str(qa.time(qa.quantity( tim[0], 's'), prec=8)[0]) + '~' + str( qa.time(qa.quantity(tim[-1], 's'), prec=8)[0]) print 'Output timerange not specified, using the entire timerange', timerange # check spectral window input; default: entire channels of spectral window 0 if spw and (type(spw) == str): [spwid, chanran] = spw.split(':') [bchan, echan] = chanran.split('~') nchan = int(echan) - int(bchan) + 1 else: casalog.post('spw not specified, use all frequency channels') freq = timfreq['axis_info']['freq_axis']['chan_freq'].flatten() nchan = len(freq) spwid = '0' bchan = '0' echan = str(nchan - 1) print 'spw not specified, use all frequency channels', spwid + ':' + bchan + '~' + str( nchan - 1) ntimergn = len(timerange) # To avoid memory error, split the channel into smaller segements for smoothing cellstep = 2 chancell = int(nchan / cellstep) l = range(nchan) chunks = [l[x:x + cellstep] for x in xrange(0, len(l), cellstep)] #spwrange='0:0~'+str(chancell) ms.close() if not (timoffset and (type(timoffset) == int)): timoffset = int(4) for i in range(len(chunks)): spwrange = spwid + ':' + str(int(bchan) + min(chunks[i])) + '~' + str( int(bchan) + max(chunks[i])) print 'Subtracting visibility from spectral range: ', spwrange result2 = task_subvs_lv1.subvs(vis, outputvis, timerange, spwrange, timoffset, windowlen, windowtype, splitsel, False, True)
def clean_iter( tim, vis, imageprefix, imagesuffix, twidth, doreg, usephacenter, reftime, ephem, msinfo, toTb, overwrite, selectdata, field, spw, uvrange, antenna, scan, observation, intent, datacolumn, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, gridder, facets, chanchunks, wprojplanes, vptable, usepointing, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, computepastep, rotatepastep, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, restart, savemodel, calcres, calcpsf, parallel, subregion, tmpdir, btidx): from tclean_cli import tclean_cli as tclean from split_cli import split_cli as split bt = btidx # 0 if bt + twidth < len(tim) - 1: et = btidx + twidth - 1 else: et = len(tim) - 1 if bt == 0: bt_d = tim[bt] - ((tim[bt + 1] - tim[bt]) / 2) else: bt_d = tim[bt] - ((tim[bt] - tim[bt - 1]) / 2) if et == (len(tim) - 1) or et == -1: et_d = tim[et] + ((tim[et] - tim[et - 1]) / 2) else: et_d = tim[et] + ((tim[et + 1] - tim[et]) / 2) timerange = qa.time(qa.quantity(bt_d, 's'), prec=9, form='ymd')[0] + '~' + \ qa.time(qa.quantity(et_d, 's'), prec=9, form='ymd')[0] btstr = qa.time(qa.quantity(bt_d, 's'), prec=9, form='fits')[0] etstr = qa.time(qa.quantity(et_d, 's'), prec=9, form='fits')[0] print('cleaning timerange: ' + timerange) image0 = btstr.replace(':', '').replace('-', '') imname = imageprefix + image0 + imagesuffix # ms_tmp = tmpdir + image0 + '.ms' # print('checkpoint 1') # # split(vis=vis, outputvis=ms_tmp, field=field, scan=scan, antenna=antenna, timerange=timerange, # # datacolumn=datacolumn) # ms.open(vis) # print('checkpoint 1-1') # ms.split(ms_tmp,field=field, scan=scan, baseline=antenna, time=timerange,whichcol=datacolumn) # print('checkpoint 1-2') # ms.close() # print('checkpoint 2') if overwrite or (len(glob.glob(imname + '*')) == 0): os.system('rm -rf {}*'.format(imname)) try: tclean(vis=vis, selectdata=selectdata, field=field, spw=spw, timerange=timerange, uvrange=uvrange, antenna=antenna, scan=scan, observation=observation, intent=intent, datacolumn=datacolumn, imagename=imname, imsize=imsize, cell=cell, phasecenter=phasecenter, stokes=stokes, projection=projection, startmodel=startmodel, specmode=specmode, reffreq=reffreq, nchan=nchan, start=start, width=width, outframe=outframe, veltype=veltype, restfreq=restfreq, interpolation=interpolation, gridder=gridder, facets=facets, chanchunks=chanchunks, wprojplanes=wprojplanes, vptable=vptable, usepointing=usepointing, mosweight=mosweight, aterm=aterm, psterm=psterm, wbawp=wbawp, conjbeams=conjbeams, cfcache=cfcache, computepastep=computepastep, rotatepastep=rotatepastep, pblimit=pblimit, normtype=normtype, deconvolver=deconvolver, scales=scales, nterms=nterms, smallscalebias=smallscalebias, restoration=restoration, restoringbeam=restoringbeam, pbcor=pbcor, outlierfile=outlierfile, weighting=weighting, robust=robust, npixels=npixels, uvtaper=uvtaper, niter=niter, gain=gain, threshold=threshold, nsigma=nsigma, cycleniter=cycleniter, cyclefactor=cyclefactor, minpsffraction=minpsffraction, maxpsffraction=maxpsffraction, interactive=interactive, usemask=usemask, mask=mask, pbmask=pbmask, sidelobethreshold=sidelobethreshold, noisethreshold=noisethreshold, lownoisethreshold=lownoisethreshold, negativethreshold=negativethreshold, smoothfactor=smoothfactor, minbeamfrac=minbeamfrac, cutthreshold=cutthreshold, growiterations=growiterations, dogrowprune=dogrowprune, minpercentchange=minpercentchange, verbose=verbose, restart=restart, savemodel=savemodel, calcres=calcres, calcpsf=calcpsf, parallel=parallel) # print('checkpoint 3') if pbcor: clnjunks = [ '.flux', '.mask', '.model', '.psf', '.residual', '.pb', '.sumwt', '.image' ] else: clnjunks = [ '.flux', '.mask', '.model', '.psf', '.residual', '.pb', '.sumwt', '.image.pbcor' ] for clnjunk in clnjunks: if os.path.exists(imname + clnjunk): shutil.rmtree(imname + clnjunk) if pbcor: os.system('mv {} {}'.format(imname + '.image.pbcor', imname + '.image')) except: print('error in cleaning image: ' + btstr) return [False, btstr, etstr, ''] else: print(imname + ' exists. Clean task aborted.') if doreg and not os.path.isfile(imname + '.fits'): # ephem.keys() # msinfo.keys() try: # check if ephemfile and msinfofile exist if not ephem: print( "ephemeris info does not exist, querying from JPL Horizons on the fly" ) ephem = hf.read_horizons(vis=vis) if not msinfo: print("ms info not provided, generating one on the fly") msinfo = hf.read_msinfo(vis) hf.imreg(vis=vis, ephem=ephem, msinfo=msinfo, timerange=timerange, reftime=reftime, imagefile=imname + '.image', fitsfile=imname + '.fits', toTb=toTb, scl100=False, usephacenter=usephacenter, subregion=subregion) if os.path.exists(imname + '.fits'): shutil.rmtree(imname + '.image') return [True, btstr, etstr, imname + '.fits'] else: return [False, btstr, etstr, ''] except: print('error in registering image: ' + btstr) return [False, btstr, etstr, imname + '.image'] else: if os.path.exists(imname + '.image'): return [True, btstr, etstr, imname + '.image'] else: return [False, btstr, etstr, '']
def test_readAndParseTbuff(self): '''flaghelper: compare the read and parse and apply tbuff''' print '' # MJD in seconds of timeranges are these # <startTime>4891227930515540000 <endTime>4891227932453838000 # <startTime>4891228473545856000 <endTime>4891228473731891000 # <startTime>4891226924455911000 <endTime>4891226927502314000 # <startTime>4891228838164987000 <endTime>4891228838418996000 # <startTime>4891228609440808000 <endTime>4891228612489617000 online = [ "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'", "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'", "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'", "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'", "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" ] myinput = "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'\n"\ "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'\n"\ "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'\n"\ "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'\n"\ "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" filename1 = 'flaghelperonline2.txt' create_input(myinput, filename1) # First timerange from online before padding origt = timerange = '2013/11/15/10:25:30.516~2013/11/15/10:25:32.454' # Apply tbuff to timeranges timebuffer = 1.1 dlist1 = fh.readAndParse([filename1], tbuff=timebuffer) self.assertEqual(len(dlist1), 5) # Get the first padded timerange from output padt = dlist1[0]['timerange'] # Revert the tbuff application manually t0, t1 = padt.split('~', 1) startTime = qa.totime(t0)['value'] startTimeSec = float((startTime * 24 * 3600) + timebuffer) startTimeSec = qa.quantity(startTimeSec, 's') paddedT0 = qa.time(startTimeSec, form='ymd', prec=9)[0] # end time endTime = qa.totime(t1)['value'] endTimeSec = float((endTime * 24 * 3600) - timebuffer) endTimeSec = qa.quantity(endTimeSec, 's') paddedT1 = qa.time(endTimeSec, form='ymd', prec=9)[0] newtimerange = paddedT0 + '~' + paddedT1 # Compare with the original self.assertEqual(origt, newtimerange) # Compare with original values from Flag.xml xmlt0 = float(4891227930515540000) * 1.0E-9 xmlt1 = float(4891227932453838000) * 1.0E-9 self.assertAlmostEqual(xmlt0, startTimeSec['value'], places=3) self.assertAlmostEqual(xmlt1, endTimeSec['value'], places=3)
def plt_dspec(specdata, pol='I', dmin=None, dmax=None, timerange=None, freqrange=None, timestr=True, movie=False, framedur=60., dtframe=10., goessav=None, goes_trange=None, savepng=True, savepdf=False): """ timerange: format: ['2012/03/10/18:00:00','2012/03/10/19:00:00'] freqrange: format: [1000.,1500.] in MHz movie: do a movie of dynamic spectrum? framedur: time range of each frame dtframe: time difference of consecutive frames goessav: provide an IDL save file from the sswidl GOES widget output goes_trange: plot only the specified time range for goes timestr: display time as strings on X-axis -- currently the times do not update themselves when zooming in """ # Set up variables import matplotlib.pyplot as plt import numpy from numpy import log10 from astropy.time import Time if pol != 'RR' and pol != 'LL' and pol != 'RRLL' and pol != 'I' and pol != 'V' and pol != 'IV': print "Please enter 'RR', 'LL', 'RRLL', 'I', 'V', 'IV' for pol" return 0 if type(specdata) is str: specdata = np.load(specdata) bl = specdata['bl'].item() try: (npol, nbl, nfreq, ntim) = specdata['spec'].shape spec = specdata['spec'] tim = specdata['tim'] tim_ = Time(tim / 3600. / 24., format='mjd') tim_plt = tim_.plot_date freq = specdata['freq'] if not 'bl' in vars(): bl = specdata['bl'] except: print('format of specdata not recognized. Check your input') return -1 if timerange: if type(timerange[0]) is str: timerange = [ qa.convert(qa.quantity(t), 's')['value'] for t in timerange ] tidx = np.where((tim >= timerange[0]) & (tim <= timerange[1]))[0] else: tidx = range(ntim) if freqrange: fidx = np.where((freq >= freqrange[0] * 1e6) & (freq <= freqrange[1] * 1e6))[0] else: fidx = range(nfreq) # setup plot parameters print 'ploting dynamic spectrum...' spec_med = np.median(np.absolute(spec)) # if not dmin: # dmin = spec_med / 20. # if not dmax: # dmax = spec_med * 5. # do the plot for b in range(nbl): if pol != 'RRLL' and pol != 'IV': if pol == 'RR': spec_plt = spec[0, b, :, :] elif pol == 'LL': spec_plt = spec[1, b, :, :] elif pol == 'I': spec_plt = (spec[0, b, :, :] + spec[1, b, :, :]) / 2. elif pol == 'V': spec_plt = (spec[0, b, :, :] - spec[1, b, :, :]) / 2. if movie: f = plt.figure(figsize=(16, 8), dpi=100) if goessav: gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) gs.update(left=0.06, right=0.97, top=0.95, bottom=0.06) ax1 = f.add_subplot(gs[0]) ax2 = f.add_subplot(gs[1]) if os.path.exists(goessav): goes = readsav(goessav) # IDL anytim 0 sec correspond to 1979 Jan 01, convert to mjd time anytimbase = qa.convert( qa.quantity('1979/01/01/00:00:00'), 's')['value'] mjdbase = goes['utbase'] + anytimbase ts = goes['tarray'] + mjdbase lc0 = goes['yclean'][0, :] lc1 = goes['yclean'][1, :] else: ax1 = f.add_subplot(211) tstart = tim[tidx[0]] tend = tim[tidx[-1]] tstartstr = qa.time(qa.quantity(tstart, 's'))[0] tendstr = qa.time(qa.quantity(tend, 's'))[0] nfrm = int((tend - tstart) / dtframe) + 1 print 'Movie mode set. ' + str( nfrm ) + ' frames to plot from ' + tstartstr + ' to ' + tendstr for i in range(nfrm): if (i != 0) and (i % 10 == 0): print str(i) + ' frames done' timeran = [ tstart + i * dtframe, tstart + i * dtframe + framedur ] tidx1 = np.where((tim >= timeran[0]) & (tim <= timeran[1]))[0] tim1 = tim_[tidx1] freq1 = freq[fidx] / 1e9 spec_plt1 = spec_plt[fidx, :][:, tidx1] ax1.pcolormesh(tim1.plot_date, freq1, spec_plt1, cmap='jet', vmin=dmin, vmax=dmax) ax1.set_xlim(tim1[0].plot_date, tim1[-1].plot_date) ax1.set_ylim(freq1[0], freq1[-1]) ax1.set_ylabel('Frequency (GHz)') ax1.set_title('Dynamic spectrum @ bl ' + bl.split(';')[b] + ', pol ' + pol) if timestr: # date_format = mdates.DateFormatter('%H:%M:%S.%f') # ax1.xaxis_date() # ax1.xaxis.set_major_formatter(date_format) locator = AutoDateLocator() ax1.xaxis.set_major_locator(locator) ax1.xaxis.set_major_formatter( AutoDateFormatter(locator)) ax1.set_autoscale_on(False) if goessav: if goes_trange: if type(goes_trange[0]) is str: goes_trange = [ qa.convert(qa.quantity(t), 's')['value'] for t in goes_trange ] idx = np.where((ts >= goes_trange[0]) & (ts <= goes_trange[1]))[0] else: idx = range(len(ts)) ts_plt = ts[idx] lc0_plt = lc0[idx] utbase = qa.convert(qa.quantity('0001/01/01/00:00:00'), 'd')['value'] + 1 ts_plt_d = ts_plt / 3600. / 24. - utbase ax2.plot_date(ts_plt_d, lc0_plt, 'b-') ax2.axvspan(tim1[0].mjd - utbase, tim1[-1].mjd - utbase, color='red', alpha=0.5) ax2.set_yscale('log') ax2.set_title('GOES 1-8 A') tstartstr_ = tim1[0].datetime.strftime( '%Y-%m-%dT%H%M%S.%f')[:-3] tendstr_ = tim1[1].datetime.strftime('%H%M%S.%f')[:-3] timstr = tstartstr_ + '-' + tendstr_ figfile = 'dspec_t' + timstr + '.png' if not os.path.isdir('dspec'): os.makedirs('dspec') f.savefig('dspec/' + figfile) plt.cla() else: f = plt.figure(figsize=(8, 4), dpi=100) ax = f.add_subplot(111) freqghz = freq / 1e9 ax.pcolormesh(tim_plt, freqghz, spec_plt, cmap='jet', vmin=dmin, vmax=dmax) ax.set_xlim(tim_plt[tidx[0]], tim_plt[tidx[-1]]) ax.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) try: from sunpy import lightcurve from sunpy.time import TimeRange, parse_time t1 = tim_[tidx[0]] t2 = tim_[tidx[-1]] tr = TimeRange(t1.iso, t2.iso) goes = lightcurve.GOESLightCurve.create(tr) goes.data['xrsb'] = 2 * (np.log10(goes.data['xrsb'])) + 26 xx = [str(ll) for ll in np.array(goes.data.index)] yy = np.array(goes.data['xrsb']) ax.plot(Time(xx).mjd * 24 * 3600, yy, c='yellow') rightaxis_label_time = Time(xx[-1]).mjd * 24 * 3600 ax.text(rightaxis_label_time, 9.6, 'A', fontsize='15') ax.text(rightaxis_label_time, 11.6, 'B', fontsize='15') ax.text(rightaxis_label_time, 13.6, 'C', fontsize='15') ax.text(rightaxis_label_time, 15.6, 'M', fontsize='15') ax.text(rightaxis_label_time, 17.6, 'X', fontsize='15') except: pass def format_coord(x, y): col = np.argmin(np.absolute(tim_plt - x)) row = np.argmin(np.absolute(freqghz - y)) if col >= 0 and col < ntim and row >= 0 and row < nfreq: timstr = tim_[col].isot flux = spec_plt[row, col] return 'time {0} = {1}, freq = {2:.3f} GHz, flux = {3:.2f} Jy'.format( col, timstr, y, flux) else: return 'x = {0}, y = {1:.3f}'.format(x, y) ax.format_coord = format_coord ax.set_ylabel('Frequency (GHz)') if bl: ax.set_title('Dynamic spectrum @ bl ' + bl.split(';')[b] + ', pol ' + pol) else: ax.set_title('Medium dynamic spectrum') if timestr: # date_format = mdates.DateFormatter('%H:%M:%S.%f') # ax.xaxis_date() # ax.xaxis.set_major_formatter(date_format) locator = AutoDateLocator() ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(AutoDateFormatter(locator)) ax.set_autoscale_on(False) else: f = plt.figure(figsize=(8, 6), dpi=100) R_plot = np.absolute(spec[0, b, :, :]) L_plot = np.absolute(spec[1, b, :, :]) I_plot = (R_plot + L_plot) / 2. V_plot = (R_plot - L_plot) / 2. if pol == 'RRLL': spec_plt_1 = R_plot spec_plt_2 = L_plot polstr = ['RR', 'LL'] if pol == 'IV': spec_plt_1 = I_plot spec_plt_2 = V_plot polstr = ['I', 'V'] ax1 = f.add_subplot(211) freqghz = freq / 1e9 ax1.pcolormesh(tim_plt, freqghz, spec_plt_1, cmap='jet', vmin=dmin, vmax=dmax) ax1.set_xlim(tim_plt[tidx[0]], tim_plt[tidx[-1]]) ax1.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) def format_coord(x, y): col = np.argmin(np.absolute(tim_plt - x)) row = np.argmin(np.absolute(freqghz - y)) if col >= 0 and col < ntim and row >= 0 and row < nfreq: timstr = tim_[col].isot flux = spec_plt[row, col] return 'time {0} = {1}, freq = {2:.3f} GHz, flux = {3:.2f} Jy'.format( col, timstr, y, flux) else: return 'x = {0}, y = {1:.3f}'.format(x, y) ax1.format_coord = format_coord ax1.set_ylabel('Frequency (GHz)') if timestr: # date_format = mdates.DateFormatter('%H:%M:%S.%f') # ax1.xaxis_date() # ax1.xaxis.set_major_formatter(date_format) locator = AutoDateLocator() ax1.xaxis.set_major_locator(locator) ax1.xaxis.set_major_formatter(AutoDateFormatter(locator)) ax1.set_title('Dynamic spectrum @ bl ' + bl.split(';')[b] + ', pol ' + polstr[0]) ax1.set_autoscale_on(False) ax2 = f.add_subplot(212) ax2.pcolormesh(tim_plt, freqghz, spec_plt_2, cmap='jet', vmin=dmin, vmax=dmax) ax2.set_xlim(tim_plt[tidx[0]], tim_plt[tidx[-1]]) ax2.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) if timestr: # date_format = mdates.DateFormatter('%H:%M:%S.%f') # ax2.xaxis_date() # ax2.xaxis.set_major_formatter(date_format) locator = AutoDateLocator() ax2.xaxis.set_major_locator(locator) ax2.xaxis.set_major_formatter(AutoDateFormatter(locator)) def format_coord(x, y): col = np.argmin(np.absolute(tim_plt - x)) row = np.argmin(np.absolute(freqghz - y)) if col >= 0 and col < ntim and row >= 0 and row < nfreq: timstr = tim_[col].isot flux = spec_plt[row, col] return 'time {0} = {1}, freq = {2:.3f} GHz, flux = {3:.2f} Jy'.format( col, timstr, y, flux) else: return 'x = {0}, y = {1:.3f}'.format(x, y) ax2.format_coord = format_coord ax2.set_ylabel('Frequency (GHz)') ax2.set_title('Dynamic spectrum @ bl ' + bl.split(';')[b] + ', pol ' + polstr[1]) ax2.set_autoscale_on(False)
def subvs(vis=None, outputvis=None, timerange=None, spw=None, subtime1=None, subtime2=None, splitsel=True, reverse=False, overwrite=False): """Perform vector subtraction for visibilities Keyword arguments: vis -- Name of input visibility file (MS) default: none; example: vis='ngc5921.ms' outputvis -- Name of output uv-subtracted visibility file (MS) default: none; example: outputvis='ngc5921_src.ms' timerange -- Time range of performing the UV subtraction: default='' means all times. examples: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' spw -- Select spectral window/channel. default = '' all the spectral channels. Example: spw='0:1~20' subtime1 -- Time range 1 of the background to be subtracted from the data default='' means all times. format: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' subtime2 -- Time range 2 of the backgroud to be subtracted from the data default='' means all times. examples: timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss' timerange = 'hh:mm:ss~hh:mm:ss' splitsel -- True or False. default = False. If splitsel = False, then the entire input measurement set is copied as the output measurement set (outputvis), with background subtracted at selected timerange and spectral channels. If splitsel = True,then only the selected timerange and spectral channels are copied into the output measurement set (outputvis). reverse -- True or False. default = False. If reverse = False, then the times indicated by subtime1 and/or subtime2 are treated as background and subtracted; If reverse = True, then reverse the sign of the background-subtracted data. The option can be used for mapping absorptive structure. overwrite -- True or False. default = False. If overwrite = True and outputvis already exists, the selected subtime and spw in the output measurment set will be replaced with background subtracted visibilities """ #check the visbility ms if not outputvis or outputvis.isspace(): raise ValueError, 'Please specify outputvis' if os.path.exists(outputvis): if overwrite: print "The already existing output measurement set will be updated." else: raise ValueError, "Output MS %s already exists - will not overwrite." % outputvis else: if not splitsel: shutil.copytree(vis, outputvis) else: ms.open(vis, nomodify=True) ms.split(outputvis, spw=spw, time=timerange, whichcol='DATA') ms.close() #define and check the time ranges if subtime1 and (type(subtime1) == str): [bsubtime1, esubtime1] = subtime1.split('~') bsubtime1sec = qa.getvalue(qa.convert(qa.totime(bsubtime1), 's')) esubtime1sec = qa.getvalue(qa.convert(qa.totime(esubtime1), 's')) timebin1sec = esubtime1sec - bsubtime1sec if timebin1sec < 0: raise Exception, 'Negative timebin! Please check the "subtime1" parameter.' casalog.post('Selected timerange 1: ' + subtime1 + ' as background for uv subtraction.') else: raise Exception, 'Please enter at least one timerange as the background' if subtime2 and (type(subtime2) == str): [bsubtime2, esubtime2] = subtime2.split('~') bsubtime2sec = qa.getvalue(qa.convert(qa.totime(bsubtime2), 's')) esubtime2sec = qa.getvalue(qa.convert(qa.totime(esubtime2), 's')) timebin2sec = esubtime2sec - bsubtime2sec if timebin2sec < 0: raise Exception, 'Negative timebin! Please check the "subtime2" parameter.' timebin2 = str(timebin2sec) + 's' casalog.post('Selected timerange 2: ' + subtime2 + ' as background for uv subtraction.') #plus 1s is to ensure averaging over the entire timerange else: casalog.post( 'Timerange 2 not selected, using only timerange 1 as background') if timerange and (type(timerange) == str): [btimeo, etimeo] = timerange.split('~') btimeosec = qa.getvalue(qa.convert(qa.totime(btimeo), 's')) etimeosec = qa.getvalue(qa.convert(qa.totime(etimeo), 's')) timebinosec = etimeosec - btimeosec if timebinosec < 0: raise Exception, 'Negative timebin! Please check the "timerange" parameter.' casalog.post('Selected timerange: ' + timerange + ' as the time for UV subtraction.') else: casalog.post( 'Output timerange not specified, using the entire timerange') if spw and (type(spw) == str): [spwid, chanran] = spw.split(':') [bchan, echan] = chanran.split('~') else: casalog.post('spw not specified, use all frequency channels') #Select the background indicated by subtime1 ms.open(vis, nomodify=True) #Select the spw id ms.msselect({'time': subtime1}) if spw and (type(spw) == str): ms.selectinit(datadescid=int(spwid)) nchan = int(echan) - int(bchan) + 1 ms.selectchannel(nchan, int(bchan), 1, 1) rec1 = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) #print 'shape of the frequency matrix ',rec1['axis_info']['freq_axis']['chan_freq'].shape sz1 = rec1['data'].shape print 'dimension of selected background 1', rec1['data'].shape #the data shape is (n_pol,n_channel,n_baseline,n_time), no need to reshape #rec1['data']=rec1['data'].reshape(sz1[0],sz1[1],sz1[2],nspw,sz1[3]/nspw,order='F') #print 'reshaped rec1 ', rec1['data'].shape rec1avg = np.average(rec1['data'], axis=3) casalog.post('Averaging the visibilities in subtime1: ' + subtime1) ms.close() if subtime2 and (type(subtime2) == str): ms.open(vis, nomodify=True) #Select the spw id ms.msselect({'time': subtime2}) if spw and (type(spw) == str): ms.selectinit(datadescid=0) nchan = int(echan) - int(bchan) + 1 ms.selectchannel(nchan, int(bchan), 1, 1) rec2 = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) sz2 = rec2['data'].shape print 'dimension of selected background 2', rec2['data'].shape #rec2['data']=rec2['data'].reshape(sz2[0],sz2[1],sz2[2],nspw,sz2[3]/nspw,order='F') #print 'reshaped rec1 ', rec2['data'].shape rec2avg = np.average(rec2['data'], axis=3) ms.close() casalog.post('Averaged the visibilities in subtime2: ' + subtime2) #do UV subtraction, according to timerange and spw ms.open(outputvis, nomodify=False) if not splitsel: #outputvis is identical to input visibility, do the selection if timerange and (type(timerange == str)): ms.msselect({'time': timerange}) if spw and (type(spw) == str): ms.selectinit(datadescid=int(spwid)) nchan = int(echan) - int(bchan) + 1 ms.selectchannel(nchan, int(bchan), 1, 1) else: #outputvis is splitted, selections have already applied, select all the data ms.selectinit(datadescid=0) orec = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) b_rows = orec['data'].shape[2] nchan = orec['data'].shape[1] #szo=orec['data'].shape print 'dimension of output data', orec['data'].shape #orec['data']=orec['data'].reshape(szo[0],szo[1],szo[2],nspw,szo[3]/nspw,order='F') #print 'reshaped rec1 ', orec['data'].shape t_rows = orec['data'].shape[3] casalog.post('Number of baselines: ' + str(b_rows)) casalog.post('Number of spectral channels: ' + str(nchan)) casalog.post('Number of time pixels: ' + str(t_rows)) if subtime1 and (not subtime2): casalog.post( 'Only "subtime1" is defined, subtracting background defined in subtime1: ' + subtime1) t1 = (np.amax(rec1['time']) + np.amin(rec1['time'])) / 2. print 't1: ', qa.time(qa.quantity(t1, 's'), form='ymd', prec=10) for i in range(t_rows): orec['data'][:, :, :, i] -= rec1avg if reverse: orec['data'][:, :, :, i] = -orec['data'][:, :, :, i] if subtime1 and subtime2 and (type(subtime2) == str): casalog.post( 'Both subtime1 and subtime2 are specified, doing linear interpolation between "subtime1" and "subtime2"' ) t1 = (np.amax(rec1['time']) + np.amin(rec1['time'])) / 2. t2 = (np.amax(rec2['time']) + np.amin(rec2['time'])) / 2. touts = orec['time'] print 't1: ', qa.time(qa.quantity(t1, 's'), form='ymd', prec=10) print 't2: ', qa.time(qa.quantity(t2, 's'), form='ymd', prec=10) for i in range(t_rows): tout = touts[i] if tout > np.amax([t1, t2]): tout = np.amax([t1, t2]) elif tout < np.amin([t1, t2]): tout = np.amin([t1, t2]) orec['data'][:, :, :, i] -= (rec2avg - rec1avg) * (tout - t1) / (t2 - t1) + rec1avg if reverse: orec['data'][:, :, :, i] = -orec['data'][:, :, :, i] #orec['data']=orec['data'].reshape(szo[0],szo[1],szo[2],szo[3],order='F') #put the modified data back into the output visibility set del orec['time'] del orec['axis_info'] ms.putdata(orec) ms.close()
def svplot(vis, timerange=None, spw='', workdir='./', specfile=None, bl=None, uvrange=None, stokes='RR,LL', dmin=None, dmax=None, goestime=None, reftime=None, xycen=None, fov=[500.,500.], xyrange=None, restoringbeam=[''], robust=0.0, niter=500, imsize=[512], cell=['5.0arcsec'],interactive=False, usemsphacenter=True, imagefile=None, fitsfile=None, plotaia=True, aiawave=171, aiafits=None, savefig=False, mkmovie=False, overwrite=True, ncpu=10, twidth=1, verbose=True): ''' Required inputs: vis: calibrated CASA measurement set Important optional inputs: timerange: timerange for clean. Standard CASA time selection format. If not provided, use the entire range (*BE CAREFUL, COULD BE VERY SLOW*) spw: spectral window selection following the CASA syntax. Examples: spw='1:2~60' (spw id 1, channel range 2-60); spw='*:1.2~1.3GHz' (selects all channels within 1.2-1.3 GHz; note the *) specfile: supply dynamic spectrum save file (from suncasa.utils.dspec2.get_dspec()). Otherwise generate a median dynamic spectrum on the fly Optional inputs: bl: baseline to generate dynamic spectrum uvrange: uvrange to select baselines for generating dynamic spectrum stokes: polarization of the clean image, can be 'RR,LL' or 'I,V' dmin,dmax: color bar parameter goestime: goes plot time, example ['2016/02/18 18:00:00','2016/02/18 23:00:00'] rhessisav: rhessi savefile reftime: reftime for the image xycen: center of the image in helioprojective coordinates (HPLN/HPLT), in arcseconds. Example: [900, -150.] fov: field of view in arcsecs. Example: [500., 500.] xyrange: field of view in solar XY coordinates. Format: [[x1,x2],[y1,y2]]. Example: [[900., 1200.],[0,300]] ***NOTE: THIS PARAMETER OVERWRITES XYCEN AND FOV*** aiawave: wave length of aia file in a imagefile: if imagefile provided, use it. Otherwise do clean and generate a new one. fitsfile: if fitsfile provided, use it. Otherwise generate a new one savefig: whether to save the figure Example: ''' if xycen: xc, yc = xycen xlen, ylen = fov if parse_version(sunpy.__version__)>parse_version('0.8.0'): xyrange = [[xc - xlen / 2.0, yc - ylen / 2.0], [xc + xlen / 2.0, yc + ylen / 2.0]] else: xyrange = [[xc - xlen / 2.0, xc + xlen / 2.0], [yc - ylen / 2.0, yc + ylen / 2.0]] stokes_allowed = ['RR,LL', 'I,V', 'RRLL', 'IV'] if not stokes in stokes_allowed: print 'wrong stokes parameter ' + str(stokes) + '. Allowed values are ' + ', '.join(stokes_allowed) return -1 if stokes == 'RRLL': stokes = 'RR,LL' if stokes == 'IV': stokes = 'I,V' if vis[-1] == '/': vis = vis[:-1] if not os.path.exists(vis): print 'input measurement not exist' return -1 if aiafits is None: aiafits = '' # split the data # generating dynamic spectrum if not os.path.exists(workdir): os.makedirs(workdir) if specfile: try: specdata = np.load(specfile) except: print('Provided dynamic spectrum file not numpy npz. Generating one from the visibility data') specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz') dspec_external(vis, workdir=workdir, specfile=specfile) specdata = np.load(specfile) # specdata = ds.get_dspec(vis, domedian=True, verbose=True) else: print('Dynamic spectrum file not provided; Generating one from the visibility data') # specdata = ds.get_dspec(vis, domedian=True, verbose=True) specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz') dspec_external(vis, workdir=workdir, specfile=specfile) specdata = np.load(specfile) tb.open(vis) starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd') endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd') tb.close() datstr = starttim.iso[:10] if timerange is None or timerange == '': starttim1 = starttim endtim1 = endtim timerange = '{0}~{1}'.format(starttim.iso.replace('-', '/').replace(' ', '/'), endtim.iso.replace('-', '/').replace(' ', '/')) else: try: (tstart, tend) = timerange.split('~') if tstart[2] == ':': starttim1 = Time(datstr + 'T' + tstart) endtim1 = Time(datstr + 'T' + tend) timerange = '{0}/{1}~{0}/{2}'.format(datstr.replace('-', '/'), tstart, tend) else: starttim1 = Time(qa.quantity(tstart, 'd')['value'], format='mjd') endtim1 = Time(qa.quantity(tend, 'd')['value'], format='mjd') except ValueError: print "keyword 'timerange' in wrong format" midtime_mjd = (starttim1.mjd + endtim1.mjd) / 2. if vis.endswith('/'): vis = vis[:-1] visname = os.path.basename(vis) bt = starttim1.plot_date et = endtim1.plot_date # find out min and max frequency for plotting in dynamic spectrum ms.open(vis) metadata = ms.metadata() observatory = metadata.observatorynames()[0] spwInfo = ms.getspectralwindowinfo() nspw = len(spwInfo) if not spw: spw = '0~' + str(nspw - 1) staql = {'timerange': timerange, 'spw': spw} if ms.msselect(staql, onlyparse=True): ndx = ms.msselectedindices() chan_sel = ndx['channel'] nspw = chan_sel.shape[0] bspw = chan_sel[0, 0] bchan = chan_sel[0, 1] espw = chan_sel[-1, 0] echan = chan_sel[-1, 2] bfreq = spwInfo[str(bspw)]['Chan1Freq'] + spwInfo[str(bspw)]['ChanWidth'] * bchan efreq = spwInfo[str(espw)]['Chan1Freq'] + spwInfo[str(espw)]['ChanWidth'] * echan bfreqghz = bfreq / 1e9 efreqghz = efreq / 1e9 if verbose: print 'selected timerange {}'.format(timerange) print 'selected frequency range {0:6.3f} to {1:6.3f} GHz'.format(bfreqghz, efreqghz) else: print "spw or timerange selection failed. Aborting..." ms.close() return -1 ms.close() if observatory == 'EOVSA': print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV' stokes = 'I,V' if mkmovie: plt.ioff() # fig = plt.figure(figsize=(12, 7.5), dpi=100) if fitsfile: pass else: if not imagefile: # from ptclean_cli import ptclean_cli as ptclean eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd')) if observatory == 'EOVSA' or (not usemsphacenter): phasecenter = '' else: phasecenter = 'J2000 ' + str(eph['ra'][0])[:15] + 'rad ' + str(eph['dec'][0])[:15] + 'rad' print 'use phasecenter: ' + phasecenter qlookfitsdir = os.path.join(workdir, 'qlookfits/') qlookfigdir = os.path.join(workdir, 'qlookimgs/') imresfile = os.path.join(qlookfitsdir, '{}.imres.npz'.format(os.path.basename(vis))) if overwrite: imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes, c_external=True) else: if os.path.exists(imresfile): imres = np.load(imresfile) imres = imres['imres'].item() else: print('Image results file not found; Creating new images.') imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes, c_external=True) if not os.path.exists(qlookfigdir): os.makedirs(qlookfigdir) plt_qlook_image(imres, figdir=qlookfigdir, specdata=specdata, verbose=True, stokes=stokes, fov=xyrange) else: spec = specdata['spec'] (npol, nbl, nfreq, ntim) = spec.shape tidx = range(ntim) fidx = range(nfreq) tim = specdata['tim'] freq = specdata['freq'] freqghz = freq / 1e9 spec_tim = Time(specdata['tim'] / 3600. / 24., format='mjd') timstrr = spec_tim.plot_date plt.ion() fig = plt.figure(figsize=(12, 7), dpi=100) gs1 = gridspec.GridSpec(3, 1) gs1.update(left=0.08, right=0.32, wspace=0.05) gs2 = gridspec.GridSpec(2, 2) gs2.update(left=0.38, right=0.98, hspace=0.02, wspace=0.02) spec_1 = np.absolute(spec[0, 0, :, :]) spec_2 = np.absolute(spec[1, 0, :, :]) if observatory == 'EVLA': # circular feeds polstr = ['RR', 'LL'] if observatory == 'EOVSA' or observatory == 'ALMA': # linear feeds polstr = ['XX', 'YY'] print 'plot the dynamic spectrum in pol ' + ' & '.join(polstr) ax1 = plt.subplot(gs1[0]) ax1.pcolormesh(timstrr, freqghz, spec_1, cmap='jet', vmin=dmin, vmax=dmax) ax1.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]]) ax1.xaxis_date() ax1.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) # ax1.set_xticklabels(['']*10) ax1.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) ax1.set_ylabel('Frequency (GHz)', fontsize=10) ax1.set_title(observatory + ' ' + datstr + ' ' + polstr[0] + ' & ' + polstr[1], fontsize=12) ax1.set_autoscale_on(False) ax1.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False)) ax1.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12) for tick in ax1.get_xticklabels(): tick.set_fontsize(8) for tick in ax1.get_yticklabels(): tick.set_fontsize(8) ax2 = plt.subplot(gs1[1]) ax2.pcolormesh(timstrr, freqghz, spec_2, cmap='jet', vmin=dmin, vmax=dmax) ax2.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]]) ax2.xaxis_date() ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S")) ax2.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]]) ax2.set_ylabel('Frequency (GHz)', fontsize=10) for tick in ax2.get_xticklabels(): tick.set_fontsize(8) for tick in ax2.get_yticklabels(): tick.set_fontsize(8) ax2.set_autoscale_on(False) ax2.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False)) ax2.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12) # Second part: GOES plot if goestime: btgoes = goestime[0] etgoes = goestime[1] else: datstrg = datstr.replace('-', '/') btgoes = datstrg + ' ' + qa.time(qa.quantity(tim[0] - 1800, 's'), form='clean', prec=9)[0] etgoes = datstrg + ' ' + qa.time(qa.quantity(tim[tidx[-1] - 1] + 1800, 's'), form='clean', prec=9)[0] if verbose: print 'Acquire GOES soft X-ray data in from ' + btgoes + ' to ' + etgoes ax3 = plt.subplot(gs1[2]) try: from sunpy import lightcurve as lc from sunpy.time import TimeRange goest = lc.GOESLightCurve.create(TimeRange(btgoes, etgoes)) except: goesscript = os.path.join(workdir, 'goes.py') goesdatafile = os.path.join(workdir, 'goes.dat') os.system('rm -rf {}'.format(goesscript)) fi = open(goesscript, 'wb') fi.write('import os \n') fi.write('from sunpy.time import TimeRange \n') fi.write('from sunpy import lightcurve as lc \n') fi.write('import pickle \n') fi.write('goesplottim = TimeRange("{0}", "{1}") \n'.format(btgoes, etgoes)) fi.write('goes = lc.GOESLightCurve.create(goesplottim) \n') fi.write('fi2 = open("{}", "wb") \n'.format(goesdatafile)) fi.write('pickle.dump(goes, fi2) \n') fi.write('fi2.close()') fi.close() try: os.system('python {}'.format(goesscript)) os.system('rm -rf {}'.format(goesscript)) except NameError: print "Bad input names" except ValueError: print "Bad input values" except: print "Unexpected error:", sys.exc_info()[0] print "Error in generating GOES light curves. Proceed without GOES..." if os.path.exists(goesdatafile): fi1 = file(goesdatafile, 'rb') goest = pickle.load(fi1) fi1.close() try: dates = mpl.dates.date2num(parse_time(goest.data.index)) goesdif = np.diff(goest.data['xrsb']) gmax = np.nanmax(goesdif) gmin = np.nanmin(goesdif) ran = gmax - gmin db = 2.8 / ran goesdifp = goesdif * db + gmin + (-6) ax3.plot_date(dates, np.log10(goest.data['xrsb']), '-', label='1.0--8.0 $\AA$', color='red', lw=2) ax3.plot_date(dates[0:-1], goesdifp, '-', label='derivate', color='blue', lw=0.4) ax3.set_ylim([-7, -3]) ax3.set_yticks([-7, -6, -5, -4, -3]) ax3.set_yticklabels([r'$10^{-7}$', r'$10^{-6}$', r'$10^{-5}$', r'$10^{-4}$', r'$10^{-3}$']) ax3.set_title('Goes Soft X-ray', fontsize=12) ax3.set_ylabel('Watts m$^{-2}$') ax3.set_xlabel(datetime.datetime.isoformat(goest.data.index[0])[0:10]) ax3.axvspan(dates[899], dates[dates.size - 899], alpha=0.2) ax2 = ax3.twinx() # ax2.set_yscale("log") ax2.set_ylim([-7, -3]) ax2.set_yticks([-7, -6, -5, -4, -3]) ax2.set_yticklabels(['B', 'C', 'M', 'X', '']) ax3.yaxis.grid(True, 'major') ax3.xaxis.grid(False, 'major') ax3.legend(prop={'size': 6}) formatter = mpl.dates.DateFormatter('%H:%M') ax3.xaxis.set_major_formatter(formatter) ax3.fmt_xdata = mpl.dates.DateFormatter('%H:%M') except: print 'Error in downloading GOES soft X-ray data. Proceeding with out soft X-ray plot.' # third part # start to download the fits files if plotaia: if not aiafits: newlist = [] items = glob.glob('*.fits') for names in items: str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[ 11:13] + '_' + starttim1.iso[14:16] str2 = str(aiawave) if names.endswith(".fits"): if names.find(str1) != -1 and names.find(str2) != -1: newlist.append(names) newlist.append('0') if newlist and os.path.exists(newlist[0]): aiafits = newlist[0] else: print 'downloading the aiafits file' wave1 = aiawave - 3 wave2 = aiawave + 3 t1 = Time(starttim1.mjd - 0.02 / 24., format='mjd') t2 = Time(endtim1.mjd + 0.02 / 24., format='mjd') try: from sunpy.net import vso client = vso.VSOClient() qr = client.query(vso.attrs.Time(t1.iso, t2.iso), vso.attrs.Instrument('aia'), vso.attrs.Wave(wave1 * u.AA, wave2 * u.AA)) res = client.get(qr, path='{file}') except: SdoDownloadscript = os.path.join(workdir, 'SdoDownload.py') os.system('rm -rf {}'.format(SdoDownloadscript)) fi = open(SdoDownloadscript, 'wb') fi.write('from sunpy.net import vso \n') fi.write('from astropy import units as u \n') fi.write('client = vso.VSOClient() \n') fi.write( "qr = client.query(vso.attrs.Time('{0}', '{1}'), vso.attrs.Instrument('aia'), vso.attrs.Wave({2} * u.AA, {3} * u.AA)) \n".format( t1.iso, t2.iso, wave1, wave2)) fi.write("res = client.get(qr, path='{file}') \n") fi.close() try: os.system('python {}'.format(SdoDownloadscript)) except NameError: print "Bad input names" except ValueError: print "Bad input values" except: print "Unexpected error:", sys.exc_info()[0] print "Error in Downloading AIA fits files. Proceed without AIA..." # Here something is needed to check whether it has finished downloading the fits files or not if not aiafits: newlist = [] items = glob.glob('*.fits') for nm in items: str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[ 11:13] + '_' + starttim1.iso[14:16] str2 = str(aiawave) if nm.find(str1) != -1 and nm.find(str2) != -1: newlist.append(nm) if newlist: aiafits = newlist[0] print 'AIA fits ' + aiafits + ' selected' else: print 'no AIA fits files found. Proceed without AIA' try: aiamap = smap.Map(aiafits) except: print 'error in reading aiafits. Proceed without AIA' # RCP or I ax4 = plt.subplot(gs2[0, 0]) ax5 = plt.subplot(gs2[1, 0]) # LCP or V ax6 = plt.subplot(gs2[0, 1]) ax7 = plt.subplot(gs2[1, 1]) if fitsfile: pass else: if not imagefile: eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd')) if observatory == 'EOVSA' or (not usemsphacenter): print 'This is EOVSA data' # use RA and DEC from FIELD ID 0 tb.open(vis+'/FIELD') phadir = tb.getcol('PHASE_DIR').flatten() tb.close() ra0 = phadir[0] dec0 = phadir[1] if stokes == 'RRLL' or stokes == 'RR,LL': print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV' stokes = 'I,V' else: ra0 = eph['ra'][0] dec0 = eph['dec'][0] if not xycen: # use solar disk center as default phasecenter = 'J2000 ' + str(ra0) + 'rad ' + str(dec0) + 'rad' else: x0 = np.radians(xycen[0]/3600.) y0 = np.radians(xycen[1]/3600.) p0 = np.radians(eph['p0'][0]) # p angle in radians raoff = -((x0) * np.cos(p0) - y0 * np.sin(p0))/np.cos(eph['dec'][0]) decoff = (x0) * np.sin(p0) + y0 * np.cos(p0) newra = ra0 + raoff newdec = dec0 + decoff phasecenter = 'J2000 ' + str(newra) + 'rad ' + str(newdec) + 'rad' imagename = os.path.join(workdir, visname + '.outim') if os.path.exists(imagename + '.image') or os.path.exists(imagename + '.flux'): os.system('rm -rf ' + imagename + '.*') sto = stokes.replace(',', '') print 'do clean for ' + timerange + ' in spw ' + spw + ' stokes ' + sto print 'Original phasecenter: '+ str(ra0) + str(dec0) print 'use phasecenter: ' + phasecenter clean(vis=vis, imagename=imagename, selectdata=True, spw=spw, timerange=timerange, stokes=sto, niter=niter, interactive=interactive, npercycle=50, imsize=imsize, cell=cell, restoringbeam=restoringbeam, weighting='briggs', robust=robust, phasecenter=phasecenter) os.system('rm -rf ' + imagename + '.psf') os.system('rm -rf ' + imagename + '.flux') os.system('rm -rf ' + imagename + '.model') os.system('rm -rf ' + imagename + '.mask') os.system('rm -rf ' + imagename + '.residual') imagefile = imagename + '.image' fitsfile = imagefile + '.fits' hf.imreg(vis=vis, ephem=eph, imagefile=imagefile, timerange=timerange, reftime=reftime, fitsfile=fitsfile, verbose=True, overwrite=True) print 'fits file ' + fitsfile + ' selected' ax4.cla() ax5.cla() ax6.cla() ax7.cla() rfits = fitsfile try: hdulist = fits.open(rfits) hdu = hdulist[0] (npol, nf, nx, ny) = hdu.data.shape rmap = smap.Map(hdu.data[0, 0, :, :], hdu.header) except: print 'radio fits file not recognized by sunpy.map. Aborting...' return -1 if npol > 1: rmap1 = smap.Map(hdu.data[0, 0, :, :], hdu.header) rmap2 = smap.Map(hdu.data[1, 0, :, :], hdu.header) XX, YY = np.meshgrid(np.arange(rmap.data.shape[1]), np.arange(rmap.data.shape[0])) try: rmapx, rmapy = rmap.pixel_to_data(XX * u.pix, YY * u.pix) except: rmapxy = rmap.pixel_to_data(XX * u.pix, YY * u.pix) rmapx = rmapxy.Tx rmapy = rmapxy.Ty if not xyrange: if xycen: x0 = xycen[0] * u.arcsec y0 = xycen[1] * u.arcsec if not xycen: row, col = rmap1.data.shape positon = np.nanargmax(rmap1.data) m, n = divmod(positon, col) x0 = rmap1.xrange[0] + rmap1.scale[1] * (n + 0.5) * u.pix y0 = rmap1.yrange[0] + rmap1.scale[0] * (m + 0.5) * u.pix if len(fov) == 1: fov=[fov]*2 sz_x = fov[0] * u.arcsec sz_y = fov[1] * u.arcsec x1 = x0 - sz_x/2. x2 = x0 + sz_x/2. y1 = y0 - sz_y/2. y2 = y0 + sz_y/2. xyrange = [[x1.value, x2.value], [y1.value, y2.value]] else: sz_x = xyrange[0][1] - xyrange[0][0] sz_y = xyrange[1][1] - xyrange[1][0] clevels1 = np.linspace(0.2, 0.9, 5) if stokes.split(',')[1] == 'V': clevels2 = np.array([0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8]) else: clevels2 = np.linspace(0.2, 0.9, 5) if 'aiamap' in vars(): aiamap.plot_settings['cmap'] = plt.get_cmap('binary') if rmap: title = 'AIA {0:.0f} + {1} {2:6.3f} GHz'.format(aiamap.wavelength.value, observatory, (bfreqghz + efreqghz) / 2.0) else: title = 'AIA {0:.0f}'.format(aiamap.wavelength.value) aiamap.plot(axes=ax4) ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12) aiamap.draw_limb() aiamap.draw_grid() aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) aiamap.plot(axes=ax6) ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12) aiamap.draw_limb() aiamap.draw_grid() aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) if rmap: ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=clevels1 * np.nanmax(rmap1.data), cmap=cm.jet) ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=clevels2 * np.nanmax(rmap2.data), cmap=cm.RdBu) ax4.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'), verticalalignment='bottom', horizontalalignment='left', transform=ax4.transAxes, color='k', fontsize=10) ax6.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'), verticalalignment='bottom', horizontalalignment='left', transform=ax6.transAxes, color='k', fontsize=10) else: title = '{0} {1:6.3f} GHz'.format(observatory, (bfreqghz + efreqghz) / 2.0) rmap1.plot(axes=ax4, cmap=cm.jet) ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12) rmap1.draw_limb() rmap1.draw_grid() rmap1.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) rmap2.plot(axes=ax6, cmap=cm.RdBu) ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12) rmap2.draw_limb() rmap2.draw_grid() # ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap1.data), # cmap=cm.gray) # ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap2.data), # cmap=cm.gray) rmap2.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y) ax4.set_xlim(-1200, 1200) ax4.set_ylim(-1200, 1200) ax6.set_xlim(-1200, 1200) ax6.set_ylim(-1200, 1200) try: subrmap1 = rmap1.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) subrmap2 = rmap2.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) except: bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=rmap1.coordinate_frame) tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=rmap1.coordinate_frame) subrmap1 = rmap1.submap(bl, tr) subrmap2 = rmap2.submap(bl, tr) XX, YY = np.meshgrid(np.arange(subrmap1.data.shape[1]), np.arange(subrmap1.data.shape[0])) try: subrmapx, subrmapy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix) except: subrmapxy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix) subrmapx = subrmapxy.Tx subrmapy = subrmapxy.Ty if 'aiamap' in vars(): try: subaiamap = aiamap.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec) except: bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=aiamap.coordinate_frame) tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=aiamap.coordinate_frame) subaiamap = aiamap.submap(bl, tr) subaiamap.plot(axes=ax5, title='') subaiamap.draw_limb() subaiamap.draw_grid() subaiamap.plot(axes=ax7, title='') subaiamap.draw_limb() subaiamap.draw_grid() ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.jet) ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.RdBu) # subaiamap.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) else: subrmap1.plot(axes=ax5, cmap=cm.jet, title='') subrmap1.draw_limb() subrmap1.draw_grid() subrmap2.plot(axes=ax7, cmap=cm.RdBu, title='') subrmap2.draw_limb() subrmap2.draw_grid() # ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, # levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.gray) # ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, # levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.gray) # subrmap1.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) # subrmap2.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec) ax5.set_xlim(xyrange[0]) ax5.set_ylim(xyrange[1]) ax5.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom', horizontalalignment='left', transform=ax5.transAxes, color='k', fontsize=10) ax7.set_xlim(xyrange[0]) ax7.set_ylim(xyrange[1]) ax7.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom', horizontalalignment='left', transform=ax7.transAxes, color='k', fontsize=10) fig.show()
def plotcomp(compdict, showplot=True, wantdict=False, symb=',', include0amp=False, include0bl=False, blunit='', bl0flux=0.0): """ Given a dict including {'clist': component list, 'objname': objname, 'epoch': epoch, 'shape': component shape dict, including direction. 'freqs (GHz)': pl.array of frequencies, 'antennalist': An array configuration file as used by simdata, 'savedfig': False or, if specified, the filename to save the plot to, 'standard': setjy fluxstandard type}, and symb: One of matplotlib's codes for plot symbols: .:,o^v<>s+xDd234hH|_ default: ',': The smallest points I could find, make a plot of visibility amplitude vs. baseline length for clist at epoch. If antennalist is not found as is, it will look for antennalist in os.getenv('CASAPATH').split(' ')[0] + '/data/alma/simmos/'. showplot: Whether or not to show the plot on screen. If wantdict is True, it returns a dictionary with the amplitudes and baselines on success. Otherwise, it returns True or False as its estimated success value. include0amp: Force the lower limit of the amplitude axis to 0. include0bl: Force the lower limit of the baseline length axis to 0. blunit: unit of the baseline length (='' used the unit in the data or klambda) bl0flux: Zero baseline flux """ def failval(): """ Returns an appropriate failure value. Note that mydict.update(plotcomp(wantdict=True, ...)) would give a confusing error message if plotcomp returned False. """ retval = False if wantdict: retval = {} return retval retval = failval() # Default try: clist = compdict['clist'] objname = compdict['objname'] epoch = compdict['epoch'] epstr = mepoch_to_str(epoch) antennalist = compdict['antennalist'] # Read the configuration info. if not antennalist: print "compdict['antennalist'] must be set!" print "Try something in", os.getenv("CASAPATH").split(' ')[0] + "/data/alma/simmos/" return failval() # Try repodir if raw antennalist doesn't work. if not os.path.exists(antennalist): repodir = os.getenv("CASAPATH").split(' ')[0] + "/data/alma/simmos/" antennalist = repodir + antennalist su = simutil("") stnx, stny, stnz, diam, padnames, nant, telescopename = su.readantenna(antennalist) #print "telescopename:", telescopename # Check that the source is up. myme = metool() posobs = myme.observatory(telescopename) #print "posobs:", posobs myme.doframe(epoch) myme.doframe(posobs) azel = myme.measure(compdict['shape']['direction'], 'azel') azeldegs = tuple([qa.convert(azel[m], 'deg')['value'] for m in ('m0', 'm1')]) casalog.post("(az, el): (%.2f, %.2f) degrees" % azeldegs) # riseset blabs to the logger, so introduce it now. casalog.post('Rise and set times of ' + objname + " from " + telescopename + ':') approx = '' if 'JPL' in compdict.get('standard', 'JPL'): # The object is in the Solar System or not known to be extragalactic. approx = "APPROXIMATE. The times do not account for the apparent motion of "\ + objname + "." casalog.post(" (" + approx + ")") riset = myme.riseset(compdict['shape']['direction']) msg = '' if riset['rise'] == 'above': msg = objname + " is circumpolar" elif riset['rise'] == 'below': msg = objname + ' is not visible from ' + telescopename if msg: if approx: msg += ' around ' + mepoch_to_str(epoch) casalog.post(msg) else: for t in riset: riset[t]['str'] = mepoch_to_str(riset[t]['utc']) casalog.post(objname + " rises at %s and sets at %s." % (riset['rise']['str'], riset['set']['str'])) tmeridian=(riset['rise']['utc']['m0']['value']+riset['set']['utc']['m0']['value'])/2. casalog.post(objname + ': meridian passage at ' + qa.time(str(tmeridian)+'d')[0]) if approx: riset['NOTE'] = approx if not azel['m1']['value'] > 0.0: casalog.post(objname + " is not visible from " + telescopename + " at " + epstr, 'SEVERE') if wantdict: return riset else: return False # Start a temp MS. workingdir = os.path.abspath(os.path.dirname(clist.rstrip('/'))) tempms = tempfile.mkdtemp(prefix=objname, dir=workingdir) mysm = smtool() mysm.open(tempms) su.setcfg(mysm, telescopename, stnx, stny, stnz, diam, padnames, posobs) #print "cfg set" # Only 1 polarization is wanted for now. stokes, feeds = su.polsettings(telescopename, 'RR') casalog.post("stokes, feeds: %s, %s" % (stokes, feeds)) fband = su.bandname(compdict['freqs (GHz)'][0]) chaninc = 1.0 nchan = len(compdict['freqs (GHz)']) if nchan > 1: chaninc = (compdict['freqs (GHz)'][-1] - compdict['freqs (GHz)'][0]) / (nchan - 1) mysm.setspwindow(spwname=fband, freq=str(compdict['freqs (GHz)'][0]) + 'GHz', deltafreq=str(chaninc) + 'GHz', freqresolution='1Hz', nchannels=nchan, refcode="LSRK", stokes=stokes) mysm.setfeed(mode=feeds, pol=['']) mysm.setlimits(shadowlimit=0.01, elevationlimit='10deg') mysm.setauto(0.0) mysm.setfield(sourcename=objname, sourcedirection=compdict['shape']['direction'], calcode="OBJ", distance='0m') mysm.settimes(integrationtime="1s", usehourangle=False, referencetime=epoch) # this only creates blank uv entries mysm.observe(sourcename=objname, spwname=fband, starttime="-0.5s", stoptime="0.5s", project=objname) mysm.setdata(fieldid=[0]) mysm.setvp() casalog.post("done setting up simulation parameters") mysm.predict(complist=clist) # do actual calculation of visibilities: mysm.close() casalog.post("Simulation finished.") mytb = tbtool() mytb.open(tempms) data = mytb.getcol('DATA')[0] # Again, only 1 polarization for now. data = abs(data) baselines = mytb.getcol('UVW')[:2,:] # Drop w. datablunit = mytb.getcolkeywords('UVW')['QuantumUnits'] mytb.close() #print "Got the data and baselines" shutil.rmtree(tempms) if datablunit[1] != datablunit[0]: casalog.post('The baseline units are mismatched!: %s' % datablunit, 'SEVERE') return failval() datablunit = datablunit[0] # uv dist unit in klambda or m if datablunit == 'm' and blunit=='klambda': kl = qa.constants('C')['value']/(compdict['freqs (GHz)'][0]*1e6) blunit = 'k$\lambda$' else: blunit = datablunit kl = 1.0 pl.ioff() #baselines = pl.hypot(baselines[0]/kl, baselines[1]/kl) baselines = pl.hypot(baselines[0], baselines[1]) #if not showplot: # casalog.post('Sorry, not showing the plot is not yet implemented', # 'WARN') if showplot: pl.ion() pl.clf() pl.ioff() nfreqs = len(compdict['freqs (GHz)']) for freqnum in xrange(nfreqs): freq = compdict['freqs (GHz)'][freqnum] casalog.post("Plotting " + str(freq) + " GHz.") pl.plot(baselines/kl, data[freqnum], symb, label="%.3g GHz" % freq) #pl.plot(baselines, data[freqnum], symb, label="%.3g GHz" % freq) pl.xlabel("Baseline length (" + blunit + ")") pl.ylabel("Visibility amplitude (Jy)") if include0amp: pl.ylim(ymin=0.0) if include0bl: pl.xlim(xmin=0.0) pl.suptitle(objname + " (predicted by %s)" % compdict['standard'], fontsize=14) #pl.suptitle(objname + " (predicted)", fontsize=14) # Unlike compdict['antennalist'], antennalist might have had repodir # prefixed to it. pl.title('at ' + epstr + ' for ' + os.path.basename(compdict['antennalist']), fontsize=10) titletxt='($%.0f^\circ$ az, $%.0f^\circ$ el)' % azeldegs # for comparison of old and new models - omit azeldegs as all in az~0 if bl0flux > 0.0: if len(compdict['freqs (GHz)']) == 1: titletxt+='\n bl0 flux:%.3f Jy' % bl0flux else: titletxt+='\n bl0 flux:%.3f Jy @ %s GHz' % (bl0flux, compdict['freqs (GHz)'][0]) pl.legend(loc='best', title=titletxt) #pl.legend(loc='best', title='($%.0f^\circ$ az, $%.0f^\circ$ el)' % azeldegs) y_formatter=matplotlib.ticker.ScalarFormatter(useOffset=False) pl.axes().yaxis.set_major_formatter(y_formatter) if showplot: pl.ion() pl.draw() if compdict.get('savedfig'): pl.savefig(compdict.get('savedfig')) casalog.post("Saved plot to " + str(compdict.get('savedfig'))) if wantdict: retval = {'amps': data, 'antennalist': antennalist, # Absolute path, now. 'azel': azel, 'baselines': baselines, 'blunit': blunit, 'riseset': riset, 'savedfig': compdict.get('savedfig')} else: retval = True except Exception, instance: casalog.post(str(instance), 'SEVERE') if os.path.isdir(tempms): shutil.rmtree(tempms)
def draw_goes(goestime=None, ax=None): if goestime: btgoes = goestime[0] etgoes = goestime[1] else: datstrg = datstr.replace('-', '/') btgoes = datstrg + ' ' + qa.time( qa.quantity(tim[0] - 1800, 's'), form='clean', prec=9)[0] etgoes = datstrg + ' ' + qa.time( qa.quantity(tim[tidx[-1] - 1] + 1800, 's'), form='clean', prec=9)[0] #if verbose: # print 'Acquire GOES soft X-ray data in from ' + btgoes + ' to ' + etgoes #ax3 = plt.subplot(gs1[2]) goesscript = os.path.join(workdir, 'goes.py') goesdatafile = os.path.join(workdir, 'goes.dat') os.system('rm -rf {}'.format(goesscript)) fi = open(goesscript, 'wb') fi.write('import os \n') fi.write('from sunpy.time import TimeRange \n') fi.write('from sunpy import lightcurve as lc \n') fi.write('import pickle \n') fi.write('goesplottim = TimeRange("{0}", "{1}") \n'.format(btgoes, etgoes)) fi.write('goes = lc.GOESLightCurve.create(goesplottim) \n') fi.write('fi2 = open("{}", "wb") \n'.format(goesdatafile)) fi.write('pickle.dump(goes, fi2) \n') fi.write('fi2.close()') fi.close() try: os.system('python {}'.format(goesscript)) except NameError: print "Bad input names" except ValueError: print "Bad input values" except: print "Unexpected error:", sys.exc_info()[0] print "Error in generating GOES light curves. Proceed without GOES..." if os.path.exists(goesdatafile): fi1 = file(goesdatafile, 'rb') goest = pickle.load(fi1) fi1.close() dates = mpl.dates.date2num(parse_time(goest.data.index)) goesdif = np.diff(goest.data['xrsb']) gmax = np.nanmax(goesdif) gmin = np.nanmin(goesdif) ran = gmax - gmin db = 2.8 / ran goesdifp = goesdif * db + gmin + (-6) ax.plot_date(dates, np.log10(goest.data['xrsb']), '-', label='1.0--8.0 $\AA$', color='red', lw=2) ax.plot_date(dates[0:-1], goesdifp, '-', label='derivate', color='blue', lw=0.4) ax.set_ylim([-7, -3]) ax.set_yticks([-7, -6, -5, -4, -3]) ax.set_yticklabels([ r'$10^{-7}$', r'$10^{-6}$', r'$10^{-5}$', r'$10^{-4}$', r'$10^{-3}$' ]) ax.set_title('Goes Soft X-ray', fontsize=12) ax.set_ylabel('Watts m$^{-2}$') ax.set_xlabel(datetime.datetime.isoformat(goest.data.index[0])[0:10]) ax.axvspan(dates[899], dates[dates.size - 899], alpha=0.2) ax.yaxis.grid(True, 'major') ax.xaxis.grid(False, 'major') ax.legend(prop={'size': 6}) formatter = mpl.dates.DateFormatter('%H:%M') ax.xaxis.set_major_formatter(formatter) ax.fmt_xdata = mpl.dates.DateFormatter('%H:%M')
def read_msinfo(vis=None, msinfofile=None, use_scan_time=True): import glob # read MS information # msinfo = dict.fromkeys([ 'vis', 'scans', 'fieldids', 'btimes', 'btimestr', 'inttimes', 'ras', 'decs', 'observatory' ]) ms.open(vis) metadata = ms.metadata() observatory = metadata.observatorynames()[0] scans = ms.getscansummary() scanids = sorted(scans.keys(), key=lambda x: int(x)) nscanid = len(scanids) btimes = [] btimestr = [] etimes = [] fieldids = [] inttimes = [] dirs = [] ras = [] decs = [] ephem_file = glob.glob(vis + '/FIELD/EPHEM*SUN.tab') if ephem_file: print('Loading ephemeris info from {}'.format(ephem_file[0])) tb.open(ephem_file[0]) col_ra = tb.getcol('RA') col_dec = tb.getcol('DEC') col_mjd = tb.getcol('MJD') if use_scan_time: from scipy.interpolate import interp1d f_ra = interp1d(col_mjd, col_ra) f_dec = interp1d(col_mjd, col_dec) for idx, scanid in enumerate(scanids): btimes.append(scans[scanid]['0']['BeginTime']) etimes.append(scans[scanid]['0']['EndTime']) fieldid = scans[scanid]['0']['FieldId'] fieldids.append(fieldid) inttimes.append(scans[scanid]['0']['IntegrationTime']) ras = f_ra(np.array(btimes)) decs = f_dec(np.array(btimes)) ras = qa.convert(qa.quantity(ras, 'deg'), 'rad') decs = qa.convert(qa.quantity(decs, 'deg'), 'rad') else: ras = qa.convert(qa.quantity(col_ra, 'deg'), 'rad') decs = qa.convert(qa.quantity(col_dec, 'deg'), 'rad') else: for idx, scanid in enumerate(scanids): btimes.append(scans[scanid]['0']['BeginTime']) etimes.append(scans[scanid]['0']['EndTime']) fieldid = scans[scanid]['0']['FieldId'] fieldids.append(fieldid) inttimes.append(scans[scanid]['0']['IntegrationTime']) dir = ms.getfielddirmeas('PHASE_DIR', fieldid) dirs.append(dir) ras.append(dir['m0']) decs.append(dir['m1']) ms.close() btimestr = [ qa.time(qa.quantity(btimes[idx], 'd'), form='fits', prec=10)[0] for idx in range(nscanid) ] msinfo['vis'] = vis msinfo['scans'] = scans msinfo['fieldids'] = fieldids msinfo['btimes'] = btimes msinfo['btimestr'] = btimestr msinfo['inttimes'] = inttimes msinfo['ras'] = ras msinfo['decs'] = decs msinfo['observatory'] = observatory if msinfofile: np.savez(msinfofile, vis=vis, scans=scans, fieldids=fieldids, btimes=btimes, btimestr=btimestr, inttimes=inttimes, ras=ras, decs=decs, observatory=observatory) return msinfo
def imreg(vis=None, ephem=None, msinfo=None, imagefile=None, timerange=None, reftime=None, fitsfile=None, beamfile=None, offsetfile=None, toTb=None, sclfactor=1.0, verbose=False, p_ang=False, overwrite=True, usephacenter=True, deletehistory=False, subregion=[], docompress=False): ''' main routine to register CASA images Required Inputs: vis: STRING. CASA measurement set from which the image is derived imagefile: STRING or LIST. name of the input CASA image timerange: STRING or LIST. timerange used to generate the CASA image, must have the same length as the input images. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00' Optional Inputs: msinfo: DICTIONARY. CASA MS information, output from read_msinfo. If not provided, generate one from the supplied vis ephem: DICTIONARY. solar ephem, output from read_horizons. If not provided, query JPL Horizons based on time info of the vis (internet connection required) fitsfile: STRING or LIST. name of the output registered fits files reftime: STRING or LIST. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00' offsetfile: optionally provide an offset with a series of solar x and y offsets with timestamps toTb: Bool. Convert the default Jy/beam to brightness temperature? sclfactor: scale the image values up by its value (to compensate VLA 20 dB attenuator) verbose: Bool. Show more diagnostic info if True. usephacenter: Bool -- if True, correct for the RA and DEC in the ms file based on solar empheris. Otherwise assume the phasecenter is correctly pointed to the solar disk center (EOVSA case) subregion: Region selection. See 'help par.region' for details. Usage: >>> from suncasa.utils import helioimage2fits as hf >>> hf.imreg(vis='mydata.ms', imagefile='myimage.image', fitsfile='myimage.fits', timerange='2017/08/21/20:21:10~2017/08/21/20:21:18') The output fits file is 'myimage.fits' History: BC (sometime in 2014): function was first wrote, followed by a number of edits by BC and SY BC (2019-07-16): Added checks for stokes parameter. Verified that for converting from Jy/beam to brightness temperature, the convention of 2*k_b*T should always be used. I.e., for unpolarized source, stokes I, RR, LL, XX, YY, etc. in the output CASA images from (t)clean should all have same values of radio intensity (in Jy/beam) and brightness temperature (in K). ''' if deletehistory: ms_clearhistory(vis) if not imagefile: raise ValueError('Please specify input image') if not timerange: raise ValueError('Please specify timerange of the input image') if type(imagefile) == str: imagefile = [imagefile] if type(timerange) == str: timerange = [timerange] if not fitsfile: fitsfile = [img + '.fits' for img in imagefile] if type(fitsfile) == str: fitsfile = [fitsfile] nimg = len(imagefile) if len(timerange) != nimg: raise ValueError( 'Number of input images does not equal to number of timeranges!') if len(fitsfile) != nimg: raise ValueError( 'Number of input images does not equal to number of output fits files!' ) nimg = len(imagefile) if verbose: print(str(nimg) + ' images to process...') if reftime: # use as reference time to find solar disk RA and DEC to register the image, but not the actual timerange associated with the image if type(reftime) == str: reftime = [reftime] * nimg if len(reftime) != nimg: raise ValueError( 'Number of reference times does not match that of input images!' ) helio = ephem_to_helio(vis, ephem=ephem, msinfo=msinfo, reftime=reftime, usephacenter=usephacenter) else: # use the supplied timerange to register the image helio = ephem_to_helio(vis, ephem=ephem, msinfo=msinfo, reftime=timerange, usephacenter=usephacenter) if toTb: (bmajs, bmins, bpas, beamunits, bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile) for n, img in enumerate(imagefile): if verbose: print('processing image #' + str(n) + ' ' + img) fitsf = fitsfile[n] timeran = timerange[n] # obtain duration of the image as FITS header exptime try: [tbg0, tend0] = timeran.split('~') tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0] tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0] tdur_s = (tend_d - tbg_d) * 3600. * 24. dateobs = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0] except: print('Error in converting the input timerange: ' + str(timeran) + '. Proceeding to the next image...') continue hel = helio[n] if not os.path.exists(img): warnings.warn('{} does not existed!'.format(img)) else: if os.path.exists(fitsf) and not overwrite: raise ValueError( 'Specified fits file already exists and overwrite is set to False. Aborting...' ) else: p0 = hel['p0'] tb.open(img + '/logtable', nomodify=False) nobs = tb.nrows() tb.removerows([i + 1 for i in range(nobs - 1)]) tb.close() ia.open(img) imr = ia.rotate(pa=str(-p0) + 'deg') if subregion is not []: imr = imr.subimage(region=subregion) imr.tofits(fitsf, history=False, overwrite=overwrite) imr.close() imsum = ia.summary() ia.close() ia.done() # construct the standard fits header # RA and DEC of the reference pixel crpix1 and crpix2 (imra, imdec) = (imsum['refval'][0], imsum['refval'][1]) # find out the difference of the image center to the CASA phase center # RA and DEC difference in arcseconds ddec = degrees((imdec - hel['dec_fld'])) * 3600. dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600. # Convert into image heliocentric offsets prad = -radians(hel['p0']) dx = (-dra) * cos(prad) - ddec * sin(prad) dy = (-dra) * sin(prad) + ddec * cos(prad) if offsetfile: try: offset = np.load(offsetfile) except: raise ValueError( 'The specified offsetfile does not exist!') reftimes_d = offset['reftimes_d'] xoffs = offset['xoffs'] yoffs = offset['yoffs'] timg_d = hel['reftime'] ind = bisect.bisect_left(reftimes_d, timg_d) xoff = xoffs[ind - 1] yoff = yoffs[ind - 1] else: xoff = hel['refx'] yoff = hel['refy'] if verbose: print( 'offset of image phase center to visibility phase center (arcsec): dx={0:.2f}, dy={1:.2f}' .format(dx, dy)) print( 'offset of visibility phase center to solar disk center (arcsec): dx={0:.2f}, dy={1:.2f}' .format(xoff, yoff)) (crval1, crval2) = (xoff + dx, yoff + dy) # update the fits header to heliocentric coordinates hdu = pyfits.open(fitsf, mode='update') hdu[0].verify('fix') header = hdu[0].header dshape = hdu[0].data.shape ndim = hdu[0].data.ndim (cdelt1, cdelt2) = (-header['cdelt1'] * 3600., header['cdelt2'] * 3600. ) # Original CDELT1, 2 are for RA and DEC in degrees header['cdelt1'] = cdelt1 header['cdelt2'] = cdelt2 header['cunit1'] = 'arcsec' header['cunit2'] = 'arcsec' header['crval1'] = crval1 header['crval2'] = crval2 header['ctype1'] = 'HPLN-TAN' header['ctype2'] = 'HPLT-TAN' header['date-obs'] = dateobs # begin time of the image if not p_ang: hel['p0'] = 0 try: # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0 if tdur_s: header.set('exptime', tdur_s) else: header.set('exptime', 1.) header.set('p_angle', hel['p0']) header.set('hgln_obs', 0.) header.set('rsun_ref', sun.constants.radius.value) if sunpyver <= 1: header.set( 'dsun_obs', sun.sunearth_distance(Time(dateobs)).to(u.meter).value) header.set( 'rsun_obs', sun.solar_semidiameter_angular_size( Time(dateobs)).value) header.set( 'hglt_obs', sun.heliographic_solar_center(Time(dateobs))[1].value) else: header.set( 'dsun_obs', sun.earth_distance(Time(dateobs)).to(u.meter).value) header.set('rsun_obs', sun.angular_radius(Time(dateobs)).value) header.set('hglt_obs', sun.L0(Time(dateobs)).value) except: # this works for astropy.io.fits if tdur_s: header.append(('exptime', tdur_s)) else: header.append(('exptime', 1.)) header.append(('p_angle', hel['p0'])) header.append(('hgln_obs', 0.)) header.append(('rsun_ref', sun.constants.radius.value)) if sunpyver <= 1: header.append( ('dsun_obs', sun.sunearth_distance(Time(dateobs)).to( u.meter).value)) header.append(('rsun_obs', sun.solar_semidiameter_angular_size( Time(dateobs)).value)) header.append(('hglt_obs', sun.heliographic_solar_center( Time(dateobs))[1].value)) else: header.append( ('dsun_obs', sun.earth_distance(Time(dateobs)).to(u.meter).value)) header.append( ('rsun_obs', sun.angular_radius(Time(dateobs)).value)) header.append(('hglt_obs', sun.L0(Time(dateobs)).value)) # check if stokes parameter exist exist_stokes = False stokes_mapper = { 'I': 1, 'Q': 2, 'U': 3, 'V': 4, 'RR': -1, 'LL': -2, 'RL': -3, 'LR': -4, 'XX': -5, 'YY': -6, 'XY': -7, 'YX': -8 } if 'CRVAL3' in header.keys(): if header['CTYPE3'] == 'STOKES': stokenum = header['CRVAL3'] exist_stokes = True if 'CRVAL4' in header.keys(): if header['CTYPE4'] == 'STOKES': stokenum = header['CRVAL4'] exist_stokes = True if exist_stokes: if stokenum in stokes_mapper.values(): stokesstr = list(stokes_mapper.keys())[list( stokes_mapper.values()).index(stokenum)] else: print('Stokes parameter {0:d} not recognized'.format( stokenum)) if verbose: print('This image is in Stokes ' + stokesstr) else: print( 'STOKES Information does not seem to exist! Assuming Stokes I' ) stokenum = 1 # intensity units to brightness temperature if toTb: # get restoring beam info bmaj = bmajs[n] bmin = bmins[n] beamunit = beamunits[n] data = hdu[ 0].data # remember the data order is reversed due to the FITS convension keys = list(header.keys()) values = list(header.values()) # which axis is frequency? faxis = keys[values.index('FREQ')][-1] faxis_ind = ndim - int(faxis) # find out the polarization of this image k_b = qa.constants('k')['value'] c_l = qa.constants('c')['value'] # Always use 2*kb for all polarizations const = 2. * k_b / c_l**2 if header['BUNIT'].lower() == 'jy/beam': header['BUNIT'] = 'K' header['BTYPE'] = 'Brightness Temperature' for i in range(dshape[faxis_ind]): nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * ( i + 1 - header['CRPIX' + faxis]) if header['CUNIT' + faxis] == 'KHz': nu *= 1e3 if header['CUNIT' + faxis] == 'MHz': nu *= 1e6 if header['CUNIT' + faxis] == 'GHz': nu *= 1e9 if len(bmaj) > 1: # multiple (per-plane) beams bmajtmp = bmaj[i] bmintmp = bmin[i] else: # one single beam bmajtmp = bmaj[0] bmintmp = bmin[0] if beamunit == 'arcsec': bmaj0 = np.radians(bmajtmp / 3600.) bmin0 = np.radians(bmintmp / 3600.) if beamunit == 'arcmin': bmaj0 = np.radians(bmajtmp / 60.) bmin0 = np.radians(bmintmp / 60.) if beamunit == 'deg': bmaj0 = np.radians(bmajtmp) bmin0 = np.radians(bmintmp) if beamunit == 'rad': bmaj0 = bmajtmp bmin0 = bmintmp beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.)) factor = const * nu**2 # SI unit jy_to_si = 1e-26 # print(nu/1e9, beam_area, factor) factor2 = sclfactor # if sclfactor: # factor2 = 100. if faxis == '3': data[:, i, :, :] *= jy_to_si / beam_area / factor * factor2 if faxis == '4': data[ i, :, :, :] *= jy_to_si / beam_area / factor * factor2 header = fu.headerfix(header) hdu.flush() hdu.close() if ndim - np.count_nonzero(np.array(dshape) == 1) > 3: docompress = False ''' Caveat: only 1D, 2D, or 3D images are currently supported by the astropy fits compression. If a n-dimensional image data array does not have at least n-3 single-dimensional entries, force docompress to be False ''' print( 'warning: The fits data contains more than 3 non squeezable dimensions. Skipping fits compression..' ) if docompress: fitsftmp = fitsf + ".tmp.fits" os.system("mv {} {}".format(fitsf, fitsftmp)) hdu = pyfits.open(fitsftmp) hdu[0].verify('fix') header = hdu[0].header data = hdu[0].data fu.write_compressed_image_fits(fitsf, data, header, compression_type='RICE_1', quantize_level=4.0) os.system("rm -rf {}".format(fitsftmp)) if deletehistory: ms_restorehistory(vis) return fitsfile
def imreg(vis=None, ephem=None, msinfo=None, imagefile=None, timerange=None, reftime=None, fitsfile=None, beamfile=None, offsetfile=None, toTb=None, scl100=None, verbose=False, p_ang=False, overwrite=True, usephacenter=True, deletehistory=False): ''' main routine to register CASA images Required Inputs: vis: STRING. CASA measurement set from which the image is derived imagefile: STRING or LIST. name of the input CASA image timerange: STRING or LIST. timerange used to generate the CASA image, must have the same length as the input images. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00' Optional Inputs: msinfo: DICTIONARY. CASA MS information, output from read_msinfo. If not provided, generate one from the supplied vis ephem: DICTIONARY. solar ephem, output from read_horizons. If not provided, query JPL Horizons based on time info of the vis (internet connection required) fitsfile: STRING or LIST. name of the output registered fits files reftime: STRING or LIST. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00' offsetfile: optionally provide an offset with a series of solar x and y offsets with timestamps toTb: Bool. Convert the default Jy/beam to brightness temperature? scl100: Bool. If True, scale the image values up by 100 (to compensate VLA 20 dB attenuator) verbose: Bool. Show more diagnostic info if True. usephacenter: Bool -- if True, correct for the RA and DEC in the ms file based on solar empheris. Otherwise assume the phasecenter is correctly pointed to the solar disk center (EOVSA case) ''' ia = iatool() if deletehistory: msclearhistory(vis) if verbose: import time t0 = time.time() prtidx = 1 print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 if not imagefile: raise ValueError, 'Please specify input image' if not timerange: raise ValueError, 'Please specify timerange of the input image' if type(imagefile) == str: imagefile = [imagefile] if type(timerange) == str: timerange = [timerange] if not fitsfile: fitsfile = [img + '.fits' for img in imagefile] if type(fitsfile) == str: fitsfile = [fitsfile] nimg = len(imagefile) if len(timerange) != nimg: raise ValueError, 'Number of input images does not equal to number of timeranges!' if len(fitsfile) != nimg: raise ValueError, 'Number of input images does not equal to number of output fits files!' nimg = len(imagefile) if verbose: print str(nimg) + ' images to process...' if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 if reftime: # use as reference time to find solar disk RA and DEC to register the image, but not the actual timerange associated with the image if type(reftime) == str: reftime = [reftime] * nimg if len(reftime) != nimg: raise ValueError, 'Number of reference times does not match that of input images!' helio = ephem_to_helio(vis, ephem=ephem, msinfo=msinfo, reftime=reftime, usephacenter=usephacenter) else: # use the supplied timerange to register the image helio = ephem_to_helio(vis, ephem=ephem, msinfo=msinfo, reftime=timerange, usephacenter=usephacenter) if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 for n, img in enumerate(imagefile): if verbose: print 'processing image #' + str(n) fitsf = fitsfile[n] timeran = timerange[n] # obtain duration of the image as FITS header exptime try: [tbg0, tend0] = timeran.split('~') tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0] tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0] tdur_s = (tend_d - tbg_d) * 3600. * 24. dateobs = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0] except: print 'Error in converting the input timerange: ' + str( timeran) + '. Proceeding to the next image...' continue if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 hel = helio[n] if not os.path.exists(img): raise ValueError, 'Please specify input image' if os.path.exists(fitsf) and not overwrite: raise ValueError, 'Specified fits file already exists and overwrite is set to False. Aborting...' else: p0 = hel['p0'] ia.open(img) imr = ia.rotate(pa=str(-p0) + 'deg') imr.tofits(fitsf, history=False, overwrite=overwrite) imr.close() imsum = ia.summary() ia.close() if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 # construct the standard fits header # RA and DEC of the reference pixel crpix1 and crpix2 (imra, imdec) = (imsum['refval'][0], imsum['refval'][1]) # find out the difference of the image center to the CASA phase center # RA and DEC difference in arcseconds ddec = degrees((imdec - hel['dec_fld'])) * 3600. dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600. # Convert into image heliocentric offsets prad = -radians(hel['p0']) dx = (-dra) * cos(prad) - ddec * sin(prad) dy = (-dra) * sin(prad) + ddec * cos(prad) if offsetfile: try: offset = np.load(offsetfile) except: raise ValueError, 'The specified offsetfile does not exist!' reftimes_d = offset['reftimes_d'] xoffs = offset['xoffs'] yoffs = offset['yoffs'] timg_d = hel['reftime'] ind = bisect.bisect_left(reftimes_d, timg_d) xoff = xoffs[ind - 1] yoff = yoffs[ind - 1] else: xoff = hel['refx'] yoff = hel['refy'] if verbose: print 'offset of image phase center to visibility phase center (arcsec): ', dx, dy print 'offset of visibility phase center to solar disk center (arcsec): ', xoff, yoff (crval1, crval2) = (xoff + dx, yoff + dy) # update the fits header to heliocentric coordinates if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 hdu = pyfits.open(fitsf, mode='update') if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 header = hdu[0].header (cdelt1, cdelt2) = (-header['cdelt1'] * 3600., header['cdelt2'] * 3600. ) # Original CDELT1, 2 are for RA and DEC in degrees header['cdelt1'] = cdelt1 header['cdelt2'] = cdelt2 header['cunit1'] = 'arcsec' header['cunit2'] = 'arcsec' header['crval1'] = crval1 header['crval2'] = crval2 header['ctype1'] = 'HPLN-TAN' header['ctype2'] = 'HPLT-TAN' header['date-obs'] = dateobs # begin time of the image if not p_ang: hel['p0'] = 0 try: # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0 if tdur_s: header.set('exptime', tdur_s) else: header.set('exptime', 1.) header.set('p_angle', hel['p0']) header.set('dsun_obs', sun.sunearth_distance(Time(dateobs)).to(u.meter).value) header.set( 'rsun_obs', sun.solar_semidiameter_angular_size(Time(dateobs)).value) header.set('rsun_ref', sun.constants.radius.value) header.set('hgln_obs', 0.) header.set('hglt_obs', sun.heliographic_solar_center(Time(dateobs))[1].value) except: # this works for astropy.io.fits if tdur_s: header.append(('exptime', tdur_s)) else: header.append(('exptime', 1.)) header.append(('p_angle', hel['p0'])) header.append( ('dsun_obs', sun.sunearth_distance(Time(dateobs)).to(u.meter).value)) header.append( ('rsun_obs', sun.solar_semidiameter_angular_size(Time(dateobs)).value)) header.append(('rsun_ref', sun.constants.radius.value)) header.append(('hgln_obs', 0.)) header.append( ('hglt_obs', sun.heliographic_solar_center(Time(dateobs))[1].value)) if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 # update intensity units, i.e. to brightness temperature? if toTb: # get restoring beam info (bmajs, bmins, bpas, beamunits, bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile) bmaj = bmajs[n] bmin = bmins[n] beamunit = beamunits[n] data = hdu[ 0].data # remember the data order is reversed due to the FITS convension dim = data.ndim sz = data.shape keys = header.keys() values = header.values() # which axis is frequency? faxis = keys[values.index('FREQ')][-1] faxis_ind = dim - int(faxis) if header['BUNIT'].lower() == 'jy/beam': header['BUNIT'] = 'K' header['BTYPE'] = 'Brightness Temperature' for i in range(sz[faxis_ind]): nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * ( i + 1 - header['CRPIX' + faxis]) if header['CUNIT' + faxis] == 'KHz': nu *= 1e3 if header['CUNIT' + faxis] == 'MHz': nu *= 1e6 if header['CUNIT' + faxis] == 'GHz': nu *= 1e9 if len(bmaj) > 1: # multiple (per-plane) beams bmajtmp = bmaj[i] bmintmp = bmin[i] else: # one single beam bmajtmp = bmaj[0] bmintmp = bmin[0] if beamunit == 'arcsec': bmaj0 = np.radians(bmajtmp / 3600.) bmin0 = np.radians(bmajtmp / 3600.) if beamunit == 'arcmin': bmaj0 = np.radians(bmajtmp / 60.) bmin0 = np.radians(bmintmp / 60.) if beamunit == 'deg': bmaj0 = np.radians(bmajtmp) bmin0 = np.radians(bmintmp) if beamunit == 'rad': bmaj0 = bmajtmp bmin0 = bmintmp beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.)) k_b = qa.constants('k')['value'] c_l = qa.constants('c')['value'] factor = 2. * k_b * nu**2 / c_l**2 # SI unit jy_to_si = 1e-26 # print nu/1e9, beam_area, factor factor2 = 1. if scl100: factor2 = 100. if faxis == '3': data[:, i, :, :] *= jy_to_si / beam_area / factor * factor2 if faxis == '4': data[ i, :, :, :] *= jy_to_si / beam_area / factor * factor2 if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1 hdu.flush() hdu.close() if verbose: print('point {}: {}'.format(prtidx, time.time() - t0)) prtidx += 1
def test_readAndParseIrregularTbuff(self): '''flaghelper: compare the read and parse and apply of irregular tbuff''' print '' # MJD in seconds of timeranges are these # <startTime>4891227930515540000 <endTime>4891227932453838000 # <startTime>4891228473545856000 <endTime>4891228473731891000 # <startTime>4891226924455911000 <endTime>4891226927502314000 # <startTime>4891228838164987000 <endTime>4891228838418996000 # <startTime>4891228609440808000 <endTime>4891228612489617000 online = [ "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'", "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'", "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'", "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'", "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" ] myinput = "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'\n"\ "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'\n"\ "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'\n"\ "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'\n"\ "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" filename1 = 'flaghelperonline2.txt' create_input(myinput, filename1) # timeranges from online before padding, for comparison later timeranges = [] for cmd in online: a, b = cmd.split(' ') b = b.lstrip('timerange=') timeranges.append(b.strip("'")) # Apply 2 values of tbuff to timeranges timebuffer = [0.4, 0.7] dlist1 = fh.readAndParse([filename1], tbuff=timebuffer) self.assertEqual(len(dlist1), 5) # check the padded time ranges before and after the application n = 0 for cmd in dlist1: padt = cmd['timerange'] # padt = dlist1[0]['timerange'] # Revert the tbuff application manually t0, t1 = padt.split('~', 1) startTime = qa.totime(t0)['value'] startTimeSec = float((startTime * 24 * 3600) + timebuffer[0]) startTimeSec = qa.quantity(startTimeSec, 's') paddedT0 = qa.time(startTimeSec, form='ymd', prec=9)[0] # end time endTime = qa.totime(t1)['value'] endTimeSec = float((endTime * 24 * 3600) - timebuffer[1]) endTimeSec = qa.quantity(endTimeSec, 's') paddedT1 = qa.time(endTimeSec, form='ymd', prec=9)[0] newtimerange = paddedT0 + '~' + paddedT1 # Compare with the original self.assertEqual(timeranges[n], newtimerange) n += 1
def plotcomp(compdict, showplot=True, wantdict=False, symb=',', include0amp=False, include0bl=False, blunit='', bl0flux=0.0): """ Given a dict including {'clist': component list, 'objname': objname, 'epoch': epoch, 'shape': component shape dict, including direction. 'freqs (GHz)': pl.array of frequencies, 'antennalist': An array configuration file as used by simdata, 'savedfig': False or, if specified, the filename to save the plot to, 'standard': setjy fluxstandard type}, and symb: One of matplotlib's codes for plot symbols: .:,o^v<>s+xDd234hH|_ default: ',': The smallest points I could find, make a plot of visibility amplitude vs. baseline length for clist at epoch. If antennalist is not found as is, it will look for antennalist in os.getenv('CASAPATH').split(' ')[0] + '/data/alma/simmos/'. showplot: Whether or not to show the plot on screen. If wantdict is True, it returns a dictionary with the amplitudes and baselines on success. Otherwise, it returns True or False as its estimated success value. include0amp: Force the lower limit of the amplitude axis to 0. include0bl: Force the lower limit of the baseline length axis to 0. blunit: unit of the baseline length (='' used the unit in the data or klambda) bl0flux: Zero baseline flux """ def failval(): """ Returns an appropriate failure value. Note that mydict.update(plotcomp(wantdict=True, ...)) would give a confusing error message if plotcomp returned False. """ retval = False if wantdict: retval = {} return retval retval = failval() # Default try: clist = compdict['clist'] objname = compdict['objname'] epoch = compdict['epoch'] epstr = mepoch_to_str(epoch) antennalist = compdict['antennalist'] # Read the configuration info. if not antennalist: print "compdict['antennalist'] must be set!" print "Try something in", os.getenv("CASAPATH").split(' ')[0] + "/data/alma/simmos/" return failval() # Try repodir if raw antennalist doesn't work. if not os.path.exists(antennalist): repodir = os.getenv("CASAPATH").split(' ')[0] + "/data/alma/simmos/" antennalist = repodir + antennalist su = simutil("") stnx, stny, stnz, diam, padnames, telescopename, obsmeas = su.readantenna(antennalist) #print "telescopename:", telescopename # Check that the source is up. myme = metool() posobs = myme.observatory(telescopename) #print "posobs:", posobs myme.doframe(epoch) myme.doframe(posobs) azel = myme.measure(compdict['shape']['direction'], 'azel') azeldegs = tuple([qa.convert(azel[m], 'deg')['value'] for m in ('m0', 'm1')]) casalog.post("(az, el): (%.2f, %.2f) degrees" % azeldegs) # riseset blabs to the logger, so introduce it now. casalog.post('Rise and set times of ' + objname + " from " + telescopename + ':') approx = '' if 'JPL' in compdict.get('standard', 'JPL'): # The object is in the Solar System or not known to be extragalactic. approx = "APPROXIMATE. The times do not account for the apparent motion of "\ + objname + "." casalog.post(" (" + approx + ")") riset = myme.riseset(compdict['shape']['direction']) msg = '' if riset['rise'] == 'above': msg = objname + " is circumpolar" elif riset['rise'] == 'below': msg = objname + ' is not visible from ' + telescopename if msg: if approx: msg += ' around ' + mepoch_to_str(epoch) casalog.post(msg) else: for t in riset: riset[t]['str'] = mepoch_to_str(riset[t]['utc']) casalog.post(objname + " rises at %s and sets at %s." % (riset['rise']['str'], riset['set']['str'])) tmeridian=(riset['rise']['utc']['m0']['value']+riset['set']['utc']['m0']['value'])/2. casalog.post(objname + ': meridian passage at ' + qa.time(str(tmeridian)+'d')[0]) if approx: riset['NOTE'] = approx if not azel['m1']['value'] > 0.0: casalog.post(objname + " is not visible from " + telescopename + " at " + epstr, 'SEVERE') if wantdict: return riset else: return False # Start a temp MS. workingdir = os.path.abspath(os.path.dirname(clist.rstrip('/'))) tempms = tempfile.mkdtemp(prefix=objname, dir=workingdir) mysm = smtool() mysm.open(tempms) su.setcfg(mysm, telescopename, stnx, stny, stnz, diam, padnames, posobs) #print "cfg set" # Only 1 polarization is wanted for now. stokes, feeds = su.polsettings(telescopename, 'RR') casalog.post("stokes, feeds: %s, %s" % (stokes, feeds)) fband = su.bandname(compdict['freqs (GHz)'][0]) chaninc = 1.0 nchan = len(compdict['freqs (GHz)']) if nchan > 1: chaninc = (compdict['freqs (GHz)'][-1] - compdict['freqs (GHz)'][0]) / (nchan - 1) mysm.setspwindow(spwname=fband, freq=str(compdict['freqs (GHz)'][0]) + 'GHz', deltafreq=str(chaninc) + 'GHz', freqresolution='1Hz', nchannels=nchan, refcode="LSRK", stokes=stokes) mysm.setfeed(mode=feeds, pol=['']) mysm.setlimits(shadowlimit=0.01, elevationlimit='10deg') mysm.setauto(0.0) mysm.setfield(sourcename=objname, sourcedirection=compdict['shape']['direction'], calcode="OBJ", distance='0m') mysm.settimes(integrationtime="1s", usehourangle=False, referencetime=epoch) # this only creates blank uv entries mysm.observe(sourcename=objname, spwname=fband, starttime="-0.5s", stoptime="0.5s", project=objname) mysm.setdata(fieldid=[0]) mysm.setvp() casalog.post("done setting up simulation parameters") mysm.predict(complist=clist) # do actual calculation of visibilities: mysm.close() casalog.post("Simulation finished.") mytb = tbtool() mytb.open(tempms) data = mytb.getcol('DATA')[0] # Again, only 1 polarization for now. data = abs(data) baselines = mytb.getcol('UVW')[:2,:] # Drop w. datablunit = mytb.getcolkeywords('UVW')['QuantumUnits'] mytb.close() #print "Got the data and baselines" shutil.rmtree(tempms) if datablunit[1] != datablunit[0]: casalog.post('The baseline units are mismatched!: %s' % datablunit, 'SEVERE') return failval() datablunit = datablunit[0] # uv dist unit in klambda or m if datablunit == 'm' and blunit=='klambda': kl = qa.constants('C')['value']/(compdict['freqs (GHz)'][0]*1e6) blunit = 'k$\lambda$' else: blunit = datablunit kl = 1.0 pl.ioff() #baselines = pl.hypot(baselines[0]/kl, baselines[1]/kl) baselines = pl.hypot(baselines[0], baselines[1]) #if not showplot: # casalog.post('Sorry, not showing the plot is not yet implemented', # 'WARN') if showplot: pl.ion() pl.clf() pl.ioff() nfreqs = len(compdict['freqs (GHz)']) for freqnum in xrange(nfreqs): freq = compdict['freqs (GHz)'][freqnum] casalog.post("Plotting " + str(freq) + " GHz.") pl.plot(baselines/kl, data[freqnum], symb, label="%.3g GHz" % freq) #pl.plot(baselines, data[freqnum], symb, label="%.3g GHz" % freq) pl.xlabel("Baseline length (" + blunit + ")") pl.ylabel("Visibility amplitude (Jy)") if include0amp: pl.ylim(ymin=0.0) if include0bl: pl.xlim(xmin=0.0) pl.suptitle(objname + " (predicted by %s)" % compdict['standard'], fontsize=14) #pl.suptitle(objname + " (predicted)", fontsize=14) # Unlike compdict['antennalist'], antennalist might have had repodir # prefixed to it. pl.title('at ' + epstr + ' for ' + os.path.basename(compdict['antennalist']), fontsize=10) titletxt='($%.0f^\circ$ az, $%.0f^\circ$ el)' % azeldegs # for comparison of old and new models - omit azeldegs as all in az~0 if bl0flux > 0.0: if len(compdict['freqs (GHz)']) == 1: titletxt+='\n bl0 flux:%.3f Jy' % bl0flux else: titletxt+='\n bl0 flux:%.3f Jy @ %s GHz' % (bl0flux, compdict['freqs (GHz)'][0]) pl.legend(loc='best', title=titletxt) #pl.legend(loc='best', title='($%.0f^\circ$ az, $%.0f^\circ$ el)' % azeldegs) y_formatter=matplotlib.ticker.ScalarFormatter(useOffset=False) pl.axes().yaxis.set_major_formatter(y_formatter) if showplot: pl.ion() pl.draw() if compdict.get('savedfig'): pl.savefig(compdict.get('savedfig')) casalog.post("Saved plot to " + str(compdict.get('savedfig'))) if wantdict: retval = {'amps': data, 'antennalist': antennalist, # Absolute path, now. 'azel': azel, 'baselines': baselines, 'blunit': blunit, 'riseset': riset, 'savedfig': compdict.get('savedfig')} else: retval = True except Exception, instance: casalog.post(str(instance), 'SEVERE') if os.path.isdir(tempms): shutil.rmtree(tempms)
def test_readAndParseIrregularTbuff(self): '''flaghelper: compare the read and parse and apply of irregular tbuff''' print '' # MJD in seconds of timeranges are these # <startTime>4891227930515540000 <endTime>4891227932453838000 # <startTime>4891228473545856000 <endTime>4891228473731891000 # <startTime>4891226924455911000 <endTime>4891226927502314000 # <startTime>4891228838164987000 <endTime>4891228838418996000 # <startTime>4891228609440808000 <endTime>4891228612489617000 online = ["antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'", "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'", "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'", "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'", "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'"] myinput = "antenna='DV03&&*' timerange='2013/11/15/10:25:30.516~2013/11/15/10:25:32.454'\n"\ "antenna='DA44&&*' timerange='2013/11/15/10:34:33.546~2013/11/15/10:34:33.732'\n"\ "antenna='DA46&&*' timerange='2013/11/15/10:08:44.456~2013/11/15/10:08:47.502'\n"\ "antenna='DV09&&*' timerange='2013/11/15/10:18:11.798~2013/11/15/10:18:13.837'\n"\ "antenna='DV05&&*' timerange='2013/11/15/10:40:38.165~2013/11/15/10:40:38.419'" filename1 = 'flaghelperonline2.txt' create_input(myinput, filename1) # timeranges from online before padding, for comparison later timeranges=[] for cmd in online: a,b = cmd.split(' ') b = b.lstrip('timerange=') timeranges.append(b.strip("'")) # Apply 2 values of tbuff to timeranges timebuffer = [0.4, 0.7] dlist1 = fh.readAndParse([filename1], tbuff=timebuffer) self.assertEqual(len(dlist1), 5) # check the padded time ranges before and after the application n = 0 for cmd in dlist1: padt = cmd['timerange'] # padt = dlist1[0]['timerange'] # Revert the tbuff application manually t0,t1 = padt.split('~',1) startTime = qa.totime(t0)['value'] startTimeSec = float((startTime * 24 * 3600) + timebuffer[0]) startTimeSec = qa.quantity(startTimeSec, 's') paddedT0 = qa.time(startTimeSec,form='ymd',prec=9)[0] # end time endTime = qa.totime(t1)['value'] endTimeSec = float((endTime * 24 * 3600) - timebuffer[1]) endTimeSec = qa.quantity(endTimeSec, 's') paddedT1 = qa.time(endTimeSec,form='ymd',prec=9)[0] newtimerange = paddedT0+'~'+paddedT1 # Compare with the original self.assertEqual(timeranges[n], newtimerange) n += 1
def ephem_to_helio(vis=None, ephem=None, msinfo=None, reftime=None, polyfit=None, usephacenter=False): '''1. Take a solar ms database, read the scan and field information, find out the pointings (in RA and DEC) 2. Compare with the ephemeris of the solar disk center (in RA and DEC) 3. Generate VLA pointings in heliocentric coordinates inputs: msinfo: CASA MS information, output from read_msinfo ephem: solar ephem, output from read_horizons reftime: list of reference times (e.g., used for imaging) CASA standard time format, either a single time (e.g., '2012/03/03/12:00:00' or a time range (e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00'. If the latter, take the midpoint of the timerange for reference. If no date specified, take the date of the first scan polyfit: ONLY works for MS database with only one source with continously tracking; not recommanded unless scan length is too long and want to have very high accuracy usephacenter: Bool -- if True, correct for the RA and DEC in the ms file based on solar empheris. Otherwise assume the phasecenter is correctly pointed to the solar disk center (EOVSA case) return value: helio: a list of VLA pointing information reftimestr: reference time, in FITS format string reftime: reference time, in mjd format ra: actual RA of phasecenter in the ms file at the reference time (interpolated) dec: actual DEC of phasecenter in the ms file at the reference time (interpolated) # CASA uses only RA and DEC of the closest field (e.g. in clean) # ra_fld: right ascention of the CASA reference pointing direction dec_fld: declination of the CASA reference pointing direction raoff: RA offset of the phasecenter in the ms file to solar center decoff: DEC offset of the phasecenter in the ms file to solar center refx: heliocentric X offset of the phasecenter in the ms file to solar center refy: heliocentric Y offset of the phasecenter in the ms file to solar center ######## Example ######### msfile='sun_C_20140910T221952-222952.10s.cal.ms' ephemfile='horizons_sun_20140910.radecp' ephem=vla_prep.read_horizons(ephemfile=ephemfile) msinfo=vla_prep.read_msinfo(msfile=msfile) polyfit=0 reftime = '22:25:20~22:25:40' ''' if not vis or not os.path.exists(vis): raise ValueError, 'Please provide information of the MS database!' if not ephem: ephem = read_horizons(vis) if not msinfo: msinfo0 = read_msinfo(vis) else: if isinstance(msinfo, str): try: msinfo0 = np.load(msinfo) except: raise ValueError, 'The specified input msinfo file does not exist!' elif isinstance(msinfo, dict): msinfo0 = msinfo else: raise ValueError, 'msinfo should be either a numpy npz or a dictionary' print 'msinfo is derived from: ', msinfo0['vis'] scans = msinfo0['scans'] fieldids = msinfo0['fieldids'] btimes = msinfo0['btimes'] inttimes = msinfo0['inttimes'] ras = msinfo0['ras'] decs = msinfo0['decs'] ra_rads = [ra['value'] for ra in ras] dec_rads = [dec['value'] for dec in decs] # fit 2nd order polynomial fits to the RAs and DECs # if polyfit: cra = np.polyfit(btimes, ra_rads, 2) cdec = np.polyfit(btimes, dec_rads, 2) # find out phase center infomation in ms according to the input time or timerange # if not reftime: raise ValueError, 'Please specify a reference time of the image' if type(reftime) == str: reftime = [reftime] if (not isinstance(reftime, list)): print 'input "reftime" is not a valid list. Abort...' nreftime = len(reftime) helio = [] for reftime0 in reftime: helio0 = dict.fromkeys(['reftimestr', 'reftime', \ 'ra', 'dec', 'ra_fld', 'dec_fld', \ 'raoff', 'decoff', 'refx', 'refy', 'p0']) helio0['reftimestr'] = reftime0 if '~' in reftime0: # if reftime0 is specified as a timerange [tbg0, tend0] = reftime0.split('~') tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0] tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0] tdur_s = (tend_d - tbg_d) * 3600. * 24. # if no date is specified, add up the date of the first scan if tend_d < 1.: if tend_d >= tbg_d: tend_d += int(btimes[0]) else: tend_d += int(btimes[0]) + 1 if tbg_d < 1.: tbg_d += int(btimes[0]) tref_d = (tbg_d + tend_d) / 2. else: # if reftime0 is specified as a single value tref_d = qa.getvalue(qa.convert(qa.totime(reftime0), 'd')) # if no date is specified, add up the date of the first scan if tref_d < 1.: tref_d += int(btimes[0]) tbg_d = tref_d # use the intergration time ind = bisect.bisect_left(btimes, tref_d) tdur_s = inttims[ind - 1] helio0['reftime'] = tref_d helio0['date-obs'] = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0] helio0['exptime'] = tdur_s # find out phase center RA and DEC in the measurement set according to the reference time # if polyfit, then use the 2nd order polynomial coeffs ind = bisect.bisect_left(btimes, tref_d) if ind > 1: dt = tref_d - btimes[ind - 1] if ind < len(btimes): scanlen = btimes[ind] - btimes[ind - 1] (ra_b, ra_e) = (ras[ind - 1]['value'], ras[ind]['value']) (dec_b, dec_e) = (decs[ind - 1]['value'], decs[ind]['value']) if ind >= len(btimes): scanlen = btimes[ind - 1] - btimes[ind - 2] (ra_b, ra_e) = (ras[ind - 2]['value'], ras[ind - 1]['value']) (dec_b, dec_e) = (decs[ind - 2]['value'], decs[ind - 1]['value']) if ind == 1: # only one scan exists (e.g., imported from AIPS) ra_b = ras[ind - 1]['value'] ra_e = ra_b dec_b = decs[ind - 1]['value'] dec_e = dec_b scanlen = 10. # radom value dt = 0. if ind < 1: raise ValueError, 'Reference time does not fall into the scan list!' if polyfit: ra = cra[0] * tref_d**2. + cra[1] * tref_d + cra[2] dec = cdec[0] * tref_d**2. + cdec[1] * tref_d + cdec[2] # if not, use linearly interpolated RA and DEC at the beginning of this scan and next scan else: ra = ra_b + (ra_e - ra_b) / scanlen * dt dec = dec_b + (dec_e - dec_b) / scanlen * dt if ra < 0: ra += 2. * np.pi if ra_b < 0: ra_b += 2. * np.pi # compare with ephemeris from JPL Horizons time0 = ephem['time'] ra0 = ephem['ra'] dec0 = ephem['dec'] p0 = ephem['p0'] delta0 = ephem['delta'] ind = bisect.bisect_left(time0, tref_d) dt0 = time0[ind] - time0[ind - 1] dt_ref = tref_d - time0[ind - 1] dra0 = ra0[ind] - ra0[ind - 1] ddec0 = dec0[ind] - dec0[ind - 1] dp0 = p0[ind] - p0[ind - 1] ddelta0 = delta0[ind] - delta0[ind - 1] ra0 = ra0[ind - 1] + dra0 / dt0 * dt_ref dec0 = dec0[ind - 1] + ddec0 / dt0 * dt_ref p0 = p0[ind - 1] + dp0 / dt0 * dt_ref delta0 = delta0[ind - 1] + ddelta0 / dt0 * dt_ref if ra0 < 0: ra0 += 2. * np.pi # RA and DEC offset in arcseconds decoff = degrees((dec - dec0)) * 3600. raoff = degrees((ra - ra0) * cos(dec)) * 3600. # Convert into heliocentric offsets prad = -radians(p0) refx = (-raoff) * cos(prad) - decoff * sin(prad) refy = (-raoff) * sin(prad) + decoff * cos(prad) helio0['ra'] = ra # ra of the actual pointing helio0['dec'] = dec # dec of the actual pointing helio0[ 'ra_fld'] = ra_b # ra of the field, used as the reference in e.g., clean helio0[ 'dec_fld'] = dec_b # dec of the field, used as the refenrence in e.g., clean helio0['raoff'] = raoff helio0['decoff'] = decoff if usephacenter: helio0['refx'] = refx helio0['refy'] = refy else: helio0['refx'] = 0. helio0['refy'] = 0. helio0['p0'] = p0 # helio['r_sun']=np.degrees(R_sun.value/(au.value*delta0))*3600. #in arcsecs helio.append(helio0) return helio
def ptclean3(vis, imageprefix, imagesuffix, ncpu, twidth, doreg, usephacenter, reftime, toTb, overwrite, selectdata, field, spw, timerange, uvrange, antenna, scan, observation, intent, datacolumn, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, gridder, facets, chanchunks, wprojplanes, vptable, usepointing, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, computepastep, rotatepastep, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, restart, savemodel, calcres, calcpsf, parallel, subregion): if not (type(ncpu) is int): casalog.post('ncpu should be an integer') ncpu = 8 if doreg: # check if ephem and msinfo exist. If not, generate one on the fly try: ephem = hf.read_horizons(vis=vis) except ValueError: print("error in obtaining ephemeris") try: msinfo = hf.read_msinfo(vis) except ValueError: print("error in getting ms info") else: ephem = None msinfo = None if imageprefix: workdir = os.path.dirname(imageprefix) else: workdir = './' tmpdir = workdir + '/tmp/' if not os.path.exists(tmpdir): os.makedirs(tmpdir) # get number of time pixels ms.open(vis) ms.selectinit() timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True) tim = timfreq['time'] ms.close() if twidth < 1: casalog.post('twidth less than 1. Change to 1') twidth = 1 if twidth > len(tim): casalog.post( 'twidth greater than # of time pixels in the dataset. Change to the timerange of the entire dateset' ) twidth = len(tim) # find out the start and end time index according to the parameter timerange # if not defined (empty string), use start and end from the entire time of the ms if not timerange: btidx = 0 etidx = len(tim) - 1 else: try: (tstart, tend) = timerange.split('~') bt_s = qa.convert(qa.quantity(tstart, 's'), 's')['value'] et_s = qa.convert(qa.quantity(tend, 's'), 's')['value'] # only time is given but not date, add the date (at 0 UT) from the first record if bt_s < 86400. or et_s < 86400.: bt_s += np.fix( qa.convert(qa.quantity(tim[0], 's'), 'd')['value']) * 86400. et_s += np.fix( qa.convert(qa.quantity(tim[0], 's'), 'd')['value']) * 86400. btidx = np.argmin(np.abs(tim - bt_s)) etidx = np.argmin(np.abs(tim - et_s)) # make the indice back to those bracket by the timerange if tim[btidx] < bt_s: btidx += 1 if tim[etidx] > et_s: etidx -= 1 if etidx <= btidx: print("ending time must be greater than starting time") print("reinitiating to the entire time range") btidx = 0 etidx = len(tim) - 1 except ValueError: print("keyword 'timerange' has a wrong format") btstr = qa.time(qa.quantity(tim[btidx], 's'), prec=9, form='fits')[0] etstr = qa.time(qa.quantity(tim[etidx], 's'), prec=9, form='fits')[0] iterable = range(btidx, etidx + 1, twidth) print('First time pixel: ' + btstr) print('Last time pixel: ' + etstr) print(str(len(iterable)) + ' images to clean...') res = [] # partition clnpart = partial( clean_iter, tim, vis, imageprefix, imagesuffix, twidth, doreg, usephacenter, reftime, ephem, msinfo, toTb, overwrite, selectdata, field, spw, uvrange, antenna, scan, observation, intent, datacolumn, imsize, cell, phasecenter, stokes, projection, startmodel, specmode, reffreq, nchan, start, width, outframe, veltype, restfreq, interpolation, gridder, facets, chanchunks, wprojplanes, vptable, usepointing, mosweight, aterm, psterm, wbawp, conjbeams, cfcache, computepastep, rotatepastep, pblimit, normtype, deconvolver, scales, nterms, smallscalebias, restoration, restoringbeam, pbcor, outlierfile, weighting, robust, npixels, uvtaper, niter, gain, threshold, nsigma, cycleniter, cyclefactor, minpsffraction, maxpsffraction, interactive, usemask, mask, pbmask, sidelobethreshold, noisethreshold, lownoisethreshold, negativethreshold, smoothfactor, minbeamfrac, cutthreshold, growiterations, dogrowprune, minpercentchange, verbose, restart, savemodel, calcres, calcpsf, parallel, subregion, tmpdir) timelapse = 0 t0 = time() # parallelization if ncpu > 1: import multiprocessing as mprocs casalog.post('Perform clean in parallel ...') print('Perform clean in parallel ...') pool = mprocs.Pool(ncpu) res = pool.map(clnpart, iterable) pool.close() pool.join() else: casalog.post('Perform clean in single process ...') print('Perform clean in single process ...') for i in iterable: res.append(clnpart(i)) t1 = time() timelapse = t1 - t0 print('It took %f secs to complete' % timelapse) # repackage this into a single dictionary results = { 'Succeeded': [], 'BeginTime': [], 'EndTime': [], 'ImageName': [] } for r in res: results['Succeeded'].append(r[0]) results['BeginTime'].append(r[1]) results['EndTime'].append(r[2]) results['ImageName'].append(r[3]) if os.path.exists(tmpdir): os.system('rm -rf ' + tmpdir) return results
def pltvs(vis='', outputvis='', plttimerange='', pltspw1='', pltspw2='', pltspw3='', timoffset=4, windowlen=10, windowtype='hamming', pol='LL', bl='19&22'): ms.open(vis, nomodify=True) """ This function can do two steps: (1) plot the uv amplitude vs. time on three selected channel and compare the original and smoothed signals. You can select appropriate window length and type, and the offset time to match the peaks and valleys for the three channel curves. (2) Confirm the use of specified window length, type and offset time and smooth the data channel by channel. The background-subtracted measurement set is then generated. """ timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True) tim = timfreq['time'] timerange = str(qa.time(qa.quantity(tim[0], 's'), prec=8)[0]) + '~' + str( qa.time(qa.quantity(tim[-1], 's'), prec=8)[0]) # check plotting timerange if plttimerange and (type(plttimerange) == str): print 'plotting the specified timerange: ', plttimerange else: plttimerange = timerange print 'plotting the entire timerange: ', plttimerange if pltspw1 and (type(pltspw1) == str): print 'Using the specified channel 1:', pltspw1 else: pltspw1 = '0:400' if pltspw2 and (type(pltspw2) == str): print 'Using the specified channel 2:', pltspw2 else: pltspw2 = '0:500' if pltspw3 and (type(pltspw3) == str): print 'Using the specified channel 3:', pltspw3 else: pltspw3 = '0:600' [spwid1, chan1] = pltspw1.split(':') [spwid2, chan2] = pltspw2.split(':') [spwid3, chan3] = pltspw3.split(':') chanid = [chan1, chan2, chan3] if not (spwid1 == spwid2 and spwid1 == spwid3): print 'Please use the same spectral window' exit() if not (timoffset and (type(timoffset) == int)): timoffset = int(4) # initialize the loop-out status status = 'n' while True: timoffset = int( raw_input("Please specify the offset after smoothing:")) windowlen = int( raw_input("Please specify window width for smoothing:")) windowtype = str( raw_input( "Please specify window type for smoothing: (e.g. 'flat', 'hanning', 'hamming', 'bartlett', 'blackman')" )) pol = str(raw_input("Please specify polarization: (e.g. RR/LL)")) bl = str(raw_input("Please specify baseline: (e.g. '19&22')")) j = 331 for i in range(len(chanid)): ms.selectinit(datadescid=int(spwid1)) if bl and (type(bl) == str): ms.msselect({'baseline': bl}) if timerange and (type(timerange) == str): ms.msselect({'time': timerange}) if chanid[i] and (type(chanid[i]) == str): ms.selectchannel(1, int(chanid[i]), 1, 1) specdata = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) if pol == 'RR': spec = specdata['data'][0, 0, 0, :] if pol == 'LL': spec = specdata['data'][1, 0, 0, :] ms.selectinit(datadescid=int(spwid1)) if bl and (type(bl) == str): ms.msselect({'baseline': bl}) if plttimerange and (type(plttimerange) == str): ms.msselect({'time': plttimerange}) if chanid[i] and (type(chanid[i]) == str): ms.selectchannel(1, int(chanid[i]), 1, 1) specdata_plt = ms.getdata(['data', 'time', 'axis_info'], ifraxis=True) if pol == 'RR': spec_plt = specdata_plt['data'][0, 0, 0, :] if pol == 'LL': spec_plt = specdata_plt['data'][1, 0, 0, :] spec_plt_smooth = task_smooth.smooth(spec_plt, timoffset, windowlen, windowtype) spec_smooth = task_smooth.smooth(spec, timoffset, windowlen, windowtype) spec_plt_amp = np.absolute(spec_plt) spec_plt_smooth_amp = np.absolute(spec_plt_smooth) #spec_plt_amp=sqrt(spec_plt.real**2+spec_plt.imag**2) #spec_plt_smooth_amp=sqrt(spec_plt_smooth.real**2+spec_plt_smooth.imag**2) #print len(spec) #print len(spec_smooth) #print type(spec) #print spec[0] sp1 = fft(spec) sp2 = fft(spec_smooth) sp3 = sp1 - sp2 freq1 = fftfreq(len(sp1), d=0.001) freq2 = fftfreq(len(sp2), d=0.001) freq3 = fftfreq(len(sp3), d=0.001) freq1_index = np.argsort(freq1) freq2_index = np.argsort(freq2) freq3_index = np.argsort(freq3) #print min(freq1),max(freq1) subplot(j) plot(spec_plt_amp) plot(spec_plt_smooth_amp) title("Signal vs Time") j = j + 1 subplot(j) plot(freq1[freq1_index], log10(sp1[freq1_index])) plot(freq2[freq2_index], log10(sp2[freq2_index])) ylim([0, 6]) title("FFT signal vs Frequency") j = j + 1 subplot(j) #plot(subspec) plot(freq3[freq3_index], log10(sp3[freq3_index])) ylim([0, 6]) title("FFT smoothed signal vs Frequency") j = j + 1 #print "number of original data points: ",len(spec) #print "number of smoothed data points: ",len(spec_smooth) status = str( raw_input("Confirm to use current parameters? (y/n/abort) ")) if status == 'y': flag1 = str( raw_input("Smooth all the channels and time range? (y/n) ")) if flag1 == 'y': smtimerange = '' smspw = '' splitsel = False else: print 'confirm using window width: ', windowlen print 'confirm using window type: ', windowtype smtimerange = str( raw_input( "Please specify the time range for smoothing (HH:MM:SS) :" )) smspw = str( raw_input( "Please specify spectral window and channel (e.g. 0:0~1032) :" )) splitsel = True break elif status == 'abort': print 'Abort background subtraction.' sys.exit() if not outputvis: outputvis = str(timoffset) + '_' + str(windowlen) + '_' + str( windowtype) + '.ms' print "Generating output: ", outputvis ms.close() result1 = subvs(vis, outputvis, smtimerange, smspw, timoffset, windowlen, windowtype, '', '', '')