Ejemplo n.º 1
0
def time2filename(msfile, timerange='', spw=''):
    from astropy.time import Time
    tb.open(msfile)
    starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd')
    tb.close()
    datstr = starttim.iso[:10]
    ms.open(msfile)
    metadata = ms.metadata()
    observatory = metadata.observatorynames()[0]
    ms.close()
    if timerange is None or timerange == '':
        starttim1 = starttim
        endtim1 = endtim
    else:
        (tstart, tend) = timerange.split('~')
        if tstart[2] == ':':
            starttim1 = Time(datstr + 'T' + tstart)
            endtim1 = Time(datstr + 'T' + tend)
        else:
            starttim1 = Time(qa.quantity(tstart, 'd')['value'], format='mjd')
            endtim1 = Time(qa.quantity(tend, 'd')['value'], format='mjd')
    midtime = Time((starttim1.mjd + endtim1.mjd) / 2., format='mjd')

    tstr = midtime.to_datetime().strftime('{}_%Y%m%dT%H%M%S'.format(observatory))

    if spw:
        spstr = 'spw{}'.format(spw.replace('~', '-'))
        filename = '.'.join([tstr, spstr])
    else:
        filename = tstr

    return filename
Ejemplo n.º 2
0
def get_trange(msfile):
    from astropy.time import Time
    tb.open(msfile)
    tr = np.array([tb.getcell('TIME', 0),
                   tb.getcell('TIME',
                              tb.nrows() - 1)]) / 24. / 3600.
    tb.close()
    return Time(tr, format='mjd')
Ejemplo n.º 3
0
def concateovsa(msname,
                msfiles,
                visprefix='./',
                doclearcal=True,
                keep_orig_ms=False,
                cols2rm=["MODEL_DATA", "CORRECTED_DATA"]):
    concatvis = visprefix + msname
    msfiles_ = []
    for idx, ll in enumerate(msfiles):
        if str(ll).endswith('/'):
            msfiles[idx] = str(ll)[:-1]
    if doclearcal:
        print 'Warning: Corrected column in the input ms file will be cleared!!!'
        for ll in msfiles:
            clearcal(vis=str(ll), addmodel=True)
    else:
        try:
            tmpdir = visprefix + '/tmp_ms/'
            if not os.path.exists(tmpdir):
                os.makedirs(tmpdir)
            for ll in msfiles:
                msfile_ = tmpdir + os.path.basename(str(ll))
                msfiles_.append(msfile_)
                split(vis=str(ll), outputvis=msfile_, datacolumn='corrected')
                clearcal(vis=msfile_, addmodel=True)
        except:
            print 'Warning: Corrected column not found in the input ms file.'
            msfiles_ = msfiles
    if msfiles_:
        concat(vis=msfiles_, concatvis=concatvis, timesort=True)
    else:
        concat(vis=msfiles, concatvis=concatvis, timesort=True)
    # Change all observation ids to be the same (zero)
    tb.open(concatvis + '/OBSERVATION', nomodify=False)
    nobs = tb.nrows()
    tim0 = tb.getcell('TIME_RANGE', 0)[0]
    tim1 = tb.getcell('TIME_RANGE', nobs - 1)[1]
    tb.removerows([i + 1 for i in range(nobs - 1)])
    tb.putcell('TIME_RANGE', 0, [tim0, tim1])
    tb.close()
    tb.open(concatvis, nomodify=False)
    obsid = tb.getcol('OBSERVATION_ID')
    newobsid = np.zeros(len(obsid), dtype='int')
    tb.putcol('OBSERVATION_ID', newobsid)
    colnames = tb.colnames()
    for l in range(len(cols2rm)):
        if cols2rm[l] in colnames:
            try:
                tb.removecols(cols2rm[l])
            except:
                pass
    tb.close()
    if msfiles_ != [] and msfiles_ != msfiles:
        for ll in msfiles_:
            os.system('rm -rf {}'.format(ll))
    if not keep_orig_ms:
        for ll in msfiles:
            os.system('rm -rf {}'.format(ll))
Ejemplo n.º 4
0
def verifyMS(msname,
             expnumspws,
             expnumchan,
             inspw,
             expchanfreqs=[],
             ignoreflags=False):
    '''Function to verify spw and channels information in an MS
       msname        --> name of MS to verify
       expnumspws    --> expected number of SPWs in the MS
       expnumchan    --> expected number of channels in spw
       inspw         --> SPW ID
       expchanfreqs  --> numpy array with expected channel frequencies
       ignoreflags   --> do not check the FLAG column
           Returns a list with True or False and a state message'''

    msg = ''
    tb.open(msname + '/SPECTRAL_WINDOW')
    nc = tb.getcell("NUM_CHAN", inspw)
    nr = tb.nrows()
    cf = tb.getcell("CHAN_FREQ", inspw)
    tb.close()
    # After channel selection/average, need to know the exact row number to check,
    # ignore this check in these cases.
    if not ignoreflags:
        tb.open(msname)
        dimdata = tb.getcell("FLAG", 0)[0].size
        tb.close()

    if not (nr == expnumspws):
        msg = "Found " + str(nr) + ", expected " + str(
            expnumspws) + " spectral windows in " + msname
        return [False, msg]
    if not (nc == expnumchan):
        msg = "Found " + str(nc) + ", expected " + str(
            expnumchan) + " channels in spw " + str(inspw) + " in " + msname
        return [False, msg]
    if not ignoreflags and (dimdata != expnumchan):
        msg = "Found " + str(dimdata) + ", expected " + str(
            expnumchan) + " channels in FLAG column in " + msname
        return [False, msg]

    if not (expchanfreqs == []):
        print "Testing channel frequencies ..."
        #        print cf
        #        print expchanfreqs
        if not (expchanfreqs.size == expnumchan):
            msg = "Internal error: array of expected channel freqs should have dimension ", expnumchan
            return [False, msg]
        df = (cf - expchanfreqs) / expchanfreqs
        if not (abs(df) < 1E-8).all:
            msg = "channel frequencies in spw " + str(
                inspw
            ) + " differ from expected values by (relative error) " + str(df)
            return [False, msg]

    return [True, msg]
Ejemplo n.º 5
0
def verifyMS(msname, expnumspws, expnumchan, inspw, expchanfreqs=[], ignoreflags=False):
    '''Function to verify spw and channels information in an MS
       msname        --> name of MS to verify
       expnumspws    --> expected number of SPWs in the MS
       expnumchan    --> expected number of channels in spw
       inspw         --> SPW ID
       expchanfreqs  --> numpy array with expected channel frequencies
       ignoreflags   --> do not check the FLAG column
           Returns a list with True or False and a state message'''
    
    msg = ''
    tb.open(msname+'/SPECTRAL_WINDOW')
    nc = tb.getcell("NUM_CHAN", inspw)
    nr = tb.nrows()
    cf = tb.getcell("CHAN_FREQ", inspw)
    tb.close()
    # After channel selection/average, need to know the exact row number to check,
    # ignore this check in these cases.
    if not ignoreflags:
        tb.open(msname)
        dimdata = tb.getcell("FLAG", 0)[0].size
        tb.close()
        
    if not (nr==expnumspws):
        msg =  "Found "+str(nr)+", expected "+str(expnumspws)+" spectral windows in "+msname
        return [False,msg]
    if not (nc == expnumchan):
        msg = "Found "+ str(nc) +", expected "+str(expnumchan)+" channels in spw "+str(inspw)+" in "+msname
        return [False,msg]
    if not ignoreflags and (dimdata != expnumchan):
        msg = "Found "+ str(dimdata) +", expected "+str(expnumchan)+" channels in FLAG column in "+msname
        return [False,msg]

    if not (expchanfreqs==[]):
        print "Testing channel frequencies ..."
#        print cf
#        print expchanfreqs
        if not (expchanfreqs.size == expnumchan):
            msg =  "Internal error: array of expected channel freqs should have dimension ", expnumchan
            return [False,msg]
        df = (cf - expchanfreqs)/expchanfreqs
        if not (abs(df) < 1E-8).all:
            msg = "channel frequencies in spw "+str(inspw)+" differ from expected values by (relative error) "+str(df)
            return [False,msg]

    return [True,msg]
Ejemplo n.º 6
0
def splitX(vis, datacolumn2='MODEL_DATA', **kwargs):
    import os
    from clearcal_cli import clearcal_cli as clearcal
    from split_cli import split_cli as split
    '''

    :param msfile:
    :param datacolumn:
    :param datacolumn2:
    :return:
    '''
    kwargs2 = kwargs.copy()
    datacolumn2 = datacolumn2.upper()

    outmsfile = kwargs['outputvis']
    if outmsfile.endswith('/'):
        outmsfile = outmsfile[:-1]
    if os.path.exists(outmsfile):
        os.system('rm -rf {}'.format(outmsfile))
    if os.path.exists('{}.flagversions'.format(outmsfile)):
        os.system('rm -rf {}.flagversions'.format(outmsfile))
    split(vis, **kwargs)

    for k in ['datacolumn', 'outputvis']:
        if k in kwargs2:
            kwargs2.pop(k)

    kwargs2['outputvis'] = 'tmpms.ms'
    kwargs2['datacolumn'] = datacolumn2.replace('_DATA', '')
    if os.path.exists('tmpms.ms'):
        os.system('rm -rf tmpms.ms')
    split(vis, **kwargs2)

    tb.open('tmpms.ms')
    nrows = tb.nrows()
    data = []
    for row in tqdm(range(nrows),
                    desc='getting {} column'.format(datacolumn2),
                    ascii=True):
        data.append(tb.getcell('DATA', row))
    tb.close()

    clearcal(outmsfile, addmodel=True)
    tb.open(outmsfile, nomodify=False)
    for row in tqdm(range(nrows),
                    desc='writing {} column'.format(datacolumn2),
                    ascii=True):
        tb.putcell(datacolumn2, row, data[row])
    tb.close()

    os.system('rm -rf tmpms.ms')
    return outmsfile
Ejemplo n.º 7
0
def get_channel_freqs_widths(msname, spwid):
    '''
    Get frequencies and widths of all the channels for an spw ID
       msname       --> name of MS
       spwid        --> spw ID

    Return two numpy arrays (frequencies, widths), each of the same length as the number of
    channels'''

    try:
        spw_table = os.path.join(msname, 'SPECTRAL_WINDOW')
        try:
            tb.open(spw_table)
        except RuntimeError:
            print 'Cannot open table: {0}'.format(spw_table)

        freqs = tb.getcell("CHAN_FREQ", spwid)
        widths = tb.getcell("CHAN_WIDTH", spwid)
    
    finally:
        tb.close()

    return freqs, widths
Ejemplo n.º 8
0
def getObservatoryName(ms):
    """
    Returns the observatory name in the specified ms, using the tb tool.
    -- Todd Hunter
    """
    antTable = ms + '/OBSERVATION'
    try:
        tb.open(antTable)
        myName = tb.getcell('TELESCOPE_NAME')
        tb.close()
    except:
        print("Could not open OBSERVATION table to get the telescope name: {}".
              format(antTable))
        myName = ''
    return (myName)
Ejemplo n.º 9
0
def getChannels(msname, spwid, chanlist):
    '''From a list of channel indices, return their frequencies
       msname       --> name of MS
       spwid        --> spw ID
       chanlist     --> list of channel indices
    Return a numpy array, the same size of chanlist, with the frequencies'''
    
    try:
        try:
            tb.open(msname+'/SPECTRAL_WINDOW')
        except:
            print 'Cannot open table '+msname+'SPECTRAL_WINDOW'
            
        cf = tb.getcell("CHAN_FREQ", spwid)
        
        # Get only the requested channels
        b = [cf[i] for i in chanlist]
        selchans = np.array(b)
    
    finally:
        tb.close()
        
    return selchans
Ejemplo n.º 10
0
def getChannels(msname, spwid, chanlist):
    '''From a list of channel indices, return their frequencies
       msname       --> name of MS
       spwid        --> spw ID
       chanlist     --> list of channel indices
    Return a numpy array, the same size of chanlist, with the frequencies'''

    try:
        try:
            tb.open(msname + '/SPECTRAL_WINDOW')
        except:
            print 'Cannot open table ' + msname + 'SPECTRAL_WINDOW'

        cf = tb.getcell("CHAN_FREQ", spwid)

        # Get only the requested channels
        b = [cf[i] for i in chanlist]
        selchans = np.array(b)

    finally:
        tb.close()

    return selchans
Ejemplo n.º 11
0
def read_horizons(t0=None,
                  dur=None,
                  vis=None,
                  observatory=None,
                  verbose=False):
    import urllib2
    import ssl
    if not t0 and not vis:
        t0 = Time.now()
    if not dur:
        dur = 1. / 60. / 24.  # default to 2 minutes
    if t0:
        try:
            btime = Time(t0)
        except:
            print('input time ' + str(t0) + ' not recognized')
            return -1
    if vis:
        if not os.path.exists(vis):
            print 'Input ms data ' + vis + ' does not exist! '
            return -1
        try:
            # ms.open(vis)
            # summary = ms.summary()
            # ms.close()
            # btime = Time(summary['BeginTime'], format='mjd')
            # etime = Time(summary['EndTime'], format='mjd')
            ## alternative way to avoid conflicts with importeovsa, if needed -- more time consuming
            if observatory == 'geocentric':
                observatory = '500'
            else:
                ms.open(vis)
                metadata = ms.metadata()
                if metadata.observatorynames()[0] == 'EVLA':
                    observatory = '-5'
                elif metadata.observatorynames()[0] == 'EOVSA':
                    observatory = '-81'
                elif metadata.observatorynames()[0] == 'ALMA':
                    observatory = '-7'
                ms.close()
            tb.open(vis)
            btime_vis = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
            etime_vis = Time(tb.getcell('TIME',
                                        tb.nrows() - 1) / 24. / 3600.,
                             format='mjd')
            tb.close()
            if verbose:
                print "Beginning time of this scan " + btime_vis.iso
                print "End time of this scan " + etime_vis.iso

            # extend the start and end time for jpl horizons by 0.5 hr on each end
            btime = Time(btime_vis.mjd - 0.5 / 24., format='mjd')
            dur = etime_vis.mjd - btime_vis.mjd + 1.0 / 24.
        except:
            print 'error in reading ms file: ' + vis + ' to obtain the ephemeris!'
            return -1

    # default the observatory to VLA, if none provided
    if not observatory:
        observatory = '-5'

    etime = Time(btime.mjd + dur, format='mjd')

    try:
        cmdstr = "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&TABLE_TYPE='OBSERVER'&QUANTITIES='1,17,20'&CSV_FORMAT='YES'&ANG_FORMAT='DEG'&CAL_FORMAT='BOTH'&SOLAR_ELONG='0,180'&CENTER='{}@399'&COMMAND='10'&START_TIME='".format(
            observatory
        ) + btime.iso.replace(
            ' ', ','
        ) + "'&STOP_TIME='" + etime.iso[:-4].replace(
            ' ', ','
        ) + "'&STEP_SIZE='1m'&SKIP_DAYLT='NO'&EXTRA_PREC='YES'&APPARENT='REFRACTED'"
        cmdstr = cmdstr.replace("'", "%27")
        try:
            context = ssl._create_unverified_context()
            f = urllib2.urlopen(cmdstr, context=context)
        except:
            f = urllib2.urlopen(cmdstr)
        lines = f.readlines()
        f.close()
    except:
        #todo use geocentric coordinate for the new VLA data
        import requests, collections
        params = collections.OrderedDict()
        params['batch'] = '1'
        params['TABLE_TYPE'] = "'OBSERVER'"
        params['QUANTITIES'] = "'1,17,20'"
        params['CSV_FORMAT'] = "'YES'"
        params['ANG_FORMAT'] = "'DEG'"
        params['CAL_FORMAT'] = "'BOTH'"
        params['SOLAR_ELONG'] = "'0,180'"
        if observatory == '500':
            params['CENTER'] = "'500'"
        else:
            params['CENTER'] = "'{}@399'".format(observatory)
        params['COMMAND'] = "'10'"
        params['START_TIME'] = "'{}'".format(btime.iso[:-4].replace(' ', ','))
        params['STOP_TIME'] = "'{}'".format(etime.iso[:-4].replace(' ', ','))
        params['STEP_SIZE'] = "'1m'"
        params['SKIP_DAYLT'] = "'NO'"
        params['EXTRA_PREC'] = "'YES'"
        params['APPAENT'] = "'REFRACTED'"
        results = requests.get("https://ssd.jpl.nasa.gov/horizons_batch.cgi",
                               params=params)
        lines = [ll for ll in results.iter_lines()]

    nline = len(lines)
    istart = 0
    for i in range(nline):
        line = lines[i]
        if line[0:5] == '$$SOE':  # start recording
            istart = i + 1
        if line[0:5] == '$$EOE':  # end recording
            iend = i
    newlines = lines[istart:iend]
    nrec = len(newlines)
    ephem_ = []
    t = []
    ra = []
    dec = []
    p0 = []
    delta = []
    for line in newlines:
        items = line.split(',')
        t.append(Time(float(items[1]), format='jd').mjd)
        ra.append(np.radians(float(items[4])))
        dec.append(np.radians(float(items[5])))
        p0.append(float(items[6]))
        delta.append(float(items[8]))
    # convert list of dictionary to a dictionary of arrays
    ephem = {'time': t, 'ra': ra, 'dec': dec, 'p0': p0, 'delta': delta}
    return ephem
Ejemplo n.º 12
0
def compVarColTables(referencetab, testtab, varcol, tolerance=0.):
    '''Compare a variable column of two tables.
       referencetab  --> a reference table
       testtab       --> a table to verify
       varcol        --> the name of a variable column (str)
       Returns True or False.
    '''

    retval = True
    tb2 = casac.table()

    tb.open(referencetab)
    cnames = tb.colnames()

    tb2.open(testtab)
    col = varcol
    if tb.isvarcol(col) and tb2.isvarcol(col):
        try:
            # First check
            if tb.nrows() != tb2.nrows():
                print 'Length of %s differ from %s, %s!=%s' % (
                    referencetab, testtab, len(rk), len(tk))
                retval = False
            else:
                for therow in xrange(tb.nrows()):

                    rdata = tb.getcell(col, therow)
                    tdata = tb2.getcell(col, therow)

                    #                    if not (rdata==tdata).all():
                    if not rdata.all() == tdata.all():
                        if (tolerance > 0.):
                            differs = False
                            for j in range(0, len(rdata)):
                                ###                                if (type(rdata[j])==float or type(rdata[j])==int):
                                if ((isinstance(rdata[j], float))
                                        or (isinstance(rdata[j], int))):
                                    if (abs(rdata[j] - tdata[j]) > tolerance *
                                            abs(rdata[j] + tdata[j])):
                                        #                                        print 'Column ', col,' differs in tables ', referencetab, ' and ', testtab
                                        #                                        print therow, j
                                        #                                        print rdata[j]
                                        #                                        print tdata[j]
                                        differs = True


###                                elif (type(rdata[j])==list or type(rdata[j])==np.ndarray):
                                elif (isinstance(rdata[j],
                                                 list)) or (isinstance(
                                                     rdata[j], np.ndarray)):
                                    for k in range(0, len(rdata[j])):
                                        if (abs(rdata[j][k] - tdata[j][k]) >
                                                tolerance * abs(rdata[j][k] +
                                                                tdata[j][k])):
                                            #                                            print 'Column ', col,' differs in tables ', referencetab, ' and ', testtab
                                            #                                            print therow, j, k
                                            #                                            print rdata[j][k]
                                            #                                            print tdata[j][k]
                                            differs = True
                                if differs:
                                    print 'ERROR: Column %s of %s and %s do not agree within tolerance %s' % (
                                        col, referencetab, testtab, tolerance)
                                    retval = False
                                    break
                        else:
                            print 'ERROR: Column %s of %s and %s do not agree.' % (
                                col, referencetab, testtab)
                            print 'ERROR: First row to differ is row=%s' % therow
                            retval = False
                            break
        finally:
            tb.close()
            tb2.close()

    else:
        print 'Columns are not varcolumns.'
        retval = False

    if retval:
        print 'Column %s of %s and %s agree' % (col, referencetab, testtab)

    return retval
Ejemplo n.º 13
0
def get_dspec(vis=None, savespec=True, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data',
              domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, fillnan=None, verbose=False):
    # from split_cli import split_cli as split
    if vis.endswith('/'):
        vis = vis[:-1]
    msfile = vis
    if not spw:
        spw = ''
    if not timeran:
        timeran = ''
    if not bl:
        bl = ''
    if domedian:
        if not uvrange:
            uvrange = '0.2~0.8km'
        bl = ''
    else:
        uvrange = ''
    # Open the ms and plot dynamic spectrum
    if verbose:
        print('Splitting selected data...')
    vis_spl = './tmpms.splitted'
    if os.path.exists(vis_spl):
        os.system('rm -rf ' + vis_spl)

    # split(vis=msfile, outputvis=vis_spl, timerange=timeran, antenna=bl, field=field, scan=scan, spw=spw,
    #       uvrange=uvrange, timebin=timebin, datacolumn=datacolumn)

    ms.open(msfile, nomodify=False)
    ms.split(outputms=vis_spl, whichcol=datacolumn, time=timeran, spw=spw, baseline=bl, field=field, scan=scan,
             uvrange=uvrange, timebin=timebin)
    ms.close()
    if verbose:
        print('Regridding into a single spectral window...')
        # print('Reading data spw by spw')

    try:
        tb.open(vis_spl + '/POLARIZATION')
        corrtype = tb.getcell('CORR_TYPE', 0)
        pols = [stokesenum[p] for p in corrtype]
        tb.close()
    except:
        pols = []

    if regridfreq:
        ms.open(vis_spl, nomodify=False)
        ms.cvel(outframe='LSRK', mode='frequency', interp='nearest')
        ms.selectinit(datadescid=0, reset=True)
        data = ms.getdata(['amplitude', 'time', 'axis_info'], ifraxis=True)
        specamp = data['amplitude']
        freq = data['axis_info']['freq_axis']['chan_freq']

    else:
        ms.open(vis_spl)
        ms.selectinit(datadescid=0, reset=True)
        spwinfo = ms.getspectralwindowinfo()
        specamp = []
        freq = []
        time = []
        for descid in range(len(spwinfo.keys())):
            ms.selectinit(datadescid=0, reset=True)
            ms.selectinit(datadescid=descid)
            data = ms.getdata(['amplitude', 'time', 'axis_info'], ifraxis=True)
            specamp_ = data['amplitude']
            freq_ = data['axis_info']['freq_axis']['chan_freq']
            time_ = data['time']
            if fillnan is not None:
                flag_ = ms.getdata(['flag', 'time', 'axis_info'], ifraxis=True)['flag']
                if type(fillnan) in [int, float, long]:
                    specamp_[flag_] = float(fillnan)
                else:
                    specamp_[flag_] = 0.0
            specamp.append(specamp_)
            freq.append(freq_)
            time.append(time_)
        specamp = np.concatenate(specamp, axis=1)
        freq = np.concatenate(freq, axis=0)
        ms.selectinit(datadescid=0, reset=True)
    ms.close()
    os.system('rm -rf ' + vis_spl)
    (npol, nfreq, nbl, ntim) = specamp.shape
    freq = freq.reshape(nfreq)

    if verbose:
        print('npol, nfreq, nbl, ntime:', (npol, nfreq, nbl, ntim))
    spec = np.swapaxes(specamp, 2, 1)

    tim = data['time']

    if domedian:
        if verbose:
            print('doing median of all the baselines')
        # mask zero values before median
        spec_masked = np.ma.masked_where(spec < 1e-9, spec)
        spec_med = np.ma.filled(np.ma.median(spec_masked, axis=1), fill_value=0.)
        nbl = 1
        ospec = spec_med.reshape((npol, nbl, nfreq, ntim))
    else:
        ospec = spec
    # Save the dynamic spectral data
    if savespec:
        if not specfile:
            specfile = msfile + '.dspec.npz'
        if os.path.exists(specfile):
            os.system('rm -rf ' + specfile)
        np.savez(specfile, spec=ospec, tim=tim, freq=freq,
                 timeran=timeran, spw=spw, bl=bl, uvrange=uvrange, pol=pols)
        if verbose:
            print('Median dynamic spectrum saved as: ' + specfile)

    return {'spec': ospec, 'tim': tim, 'freq': freq, 'timeran': timeran, 'spw': spw, 'bl': bl, 'uvrange': uvrange,
            'pol': pols}
Ejemplo n.º 14
0
visa.append(
    '/srg/ywei/data/eovsa/sep6_dofinal/slfcal/IDB20170906T190319-195320.ms.corrected.xx.slfcal'
)
visa.append(
    '/srg/ywei/data/eovsa/sep6_dofinal/slfcal/IDB20170906T190319-195320.ms.corrected.xx.slfcal0'
)
visa.append(
    '/srg/ywei/data/eovsa/sep6_dofinal/slfcal/IDB20170906T190319-195320.ms.corrected.xx.slfcal01'
)
visa.append(
    '/srg/ywei/data/eovsa/sep6_dofinal/slfcal/IDB20170906T190319-195320.ms.corrected.xx.slfcaled'
)
tb.open(
    '/srg/ywei/data/eovsa/sep6_dofinal/slfcal/IDB20170906T190319-195320.ms.corrected.xx.slfcal'
)
starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd')
tb.close()
trange = '{0}~{1}'.format(
    starttim.iso.replace('-', '/').replace(' ', '/'),
    endtim.iso.replace('-', '/').replace(' ', '/'))
workdir = '/srg/ywei/data/eovsa/sep6_dofinal'
for index in range(4):
    imgprefix = workdir + '/slfcal/images/' + str(index) + 'testing_slf_192920'
    img_final = imgprefix + '_final'
    spws = [str(s + 1) for s in range(30)]
    slfcaledms = visa[index]
    tb.open(slfcaledms + '/SPECTRAL_WINDOW')
    reffreqs = tb.getcol('REF_FREQUENCY')
    bdwds = tb.getcol('TOTAL_BANDWIDTH')
    cfreqs = reffreqs + bdwds / 2.
Ejemplo n.º 15
0
def mk_qlook_image(trange,
                   doimport=False,
                   docalib=False,
                   ncpu=10,
                   twidth=12,
                   stokes=None,
                   antenna='0~12',
                   lowcutoff_freq=3.7,
                   imagedir=None,
                   spws=['1~5', '6~10', '11~15', '16~25'],
                   toTb=True,
                   overwrite=True,
                   doslfcal=False,
                   verbose=False):
    '''
       trange: can be 1) a single Time() object: use the entire day
                      2) a range of Time(), e.g., Time(['2017-08-01 00:00','2017-08-01 23:00'])
                      3) a single or a list of UDBms file(s)
                      4) None -- use current date Time.now()
    '''
    antenna0 = antenna
    if type(trange) == Time:
        mslist = trange2ms(trange=trange, doimport=doimport)
        vis = mslist['ms']
        tsts = [l.to_datetime() for l in mslist['tstlist']]
    if type(trange) == str:
        try:
            date = Time(trange)
            mslist = trange2ms(trange=trange, doimport=doimport)
            vis = mslist['ms']
            tsts = [l.to_datetime() for l in mslist['tstlist']]
        except:
            vis = [trange]
            tsts = []
            for v in vis:
                tb.open(v + '/OBSERVATION')
                tsts.append(
                    Time(tb.getcell('TIME_RANGE')[0] / 24 / 3600,
                         format='mjd').datetime)
                tb.close()
    subdir = [tst.strftime("%Y/%m/%d/") for tst in tsts]

    for idx, f in enumerate(vis):
        if f[-1] == '/':
            vis[idx] = f[:-1]
    if not stokes:
        stokes = 'XX'

    if not imagedir:
        imagedir = './'
    imres = {
        'Succeeded': [],
        'BeginTime': [],
        'EndTime': [],
        'ImageName': [],
        'Spw': [],
        'Vis': [],
        'Synoptic': {
            'Succeeded': [],
            'BeginTime': [],
            'EndTime': [],
            'ImageName': [],
            'Spw': [],
            'Vis': []
        }
    }
    for n, msfile in enumerate(vis):
        msfilebs = os.path.basename(msfile)
        imdir = imagedir + subdir[n]
        if not os.path.exists(imdir):
            os.makedirs(imdir)
        if doslfcal:
            slfcalms = './' + msfilebs + '.xx'
            split(msfile,
                  outputvis=slfcalms,
                  datacolumn='corrected',
                  correlation='XX')
        cfreqs = getspwfreq(msfile)
        for spw in spws:
            antenna = antenna0
            if spw == '':
                continue
            spwran = [s.zfill(2) for s in spw.split('~')]
            freqran = [cfreqs[int(s)] for s in spw.split('~')]
            cfreq = np.mean(freqran)
            bmsz = max(150. / cfreq, 20.)
            uvrange = '<10klambda'
            if doslfcal:
                slfcal_img = './' + msfilebs + '.slf.spw' + spw.replace(
                    '~', '-') + '.slfimg'
                slfcal_tb = './' + msfilebs + '.slf.spw' + spw.replace(
                    '~', '-') + '.slftb'
                try:
                    clean(vis=slfcalms,
                          antenna=antenna,
                          imagename=slfcal_img,
                          spw=spw,
                          mode='mfs',
                          timerange='',
                          imagermode='csclean',
                          psfmode='clark',
                          imsize=[512, 512],
                          cell=['5arcsec'],
                          niter=100,
                          gain=0.05,
                          stokes='I',
                          weighting='natural',
                          restoringbeam=[str(bmsz) + 'arcsec'],
                          pbcor=False,
                          interactive=False,
                          usescratch=True)
                except:
                    print('error in cleaning spw: ' + spw)
                    break
                gaincal(vis=slfcalms,
                        refant='0',
                        antenna=antenna,
                        caltable=slfcal_tb,
                        spw=spw,
                        uvrange='',
                        gaintable=[],
                        selectdata=True,
                        timerange='',
                        solint='600s',
                        gaintype='G',
                        calmode='p',
                        combine='',
                        minblperant=3,
                        minsnr=2,
                        append=False)
                if not os.path.exists(slfcal_tb):
                    print('No solution found in spw: ' + spw)
                    break
                else:
                    clearcal(slfcalms)
                    delmod(slfcalms)
                    applycal(vis=slfcalms,
                             gaintable=[slfcal_tb],
                             spw=spw,
                             selectdata=True,
                             antenna=antenna,
                             interp='nearest',
                             flagbackup=False,
                             applymode='calonly',
                             calwt=False)
                    msfile = slfcalms

            imsize = 512
            cell = ['5arcsec']
            if len(spwran) == 2:
                spwstr = spwran[0] + '~' + spwran[1]
            else:
                spwstr = spwran[0]

            restoringbeam = ['{0:.1f}arcsec'.format(bmsz)]
            imagesuffix = '.spw' + spwstr.replace('~', '-')
            if cfreq > 10.:
                antenna = antenna + ';!0&1;!0&2'  # deselect the shortest baselines
            # else:
            #     antenna = antenna + ';!0&1'  # deselect the shortest baselines

            res = ptclean3(vis=msfile,
                           imageprefix=imdir,
                           imagesuffix=imagesuffix,
                           twidth=twidth,
                           uvrange=uvrange,
                           spw=spw,
                           ncpu=ncpu,
                           niter=1000,
                           gain=0.05,
                           antenna=antenna,
                           imsize=imsize,
                           cell=cell,
                           stokes=stokes,
                           doreg=True,
                           usephacenter=False,
                           overwrite=overwrite,
                           toTb=toTb,
                           restoringbeam=restoringbeam,
                           specmode="mfs",
                           deconvolver="hogbom",
                           datacolumn='data',
                           pbcor=True)

            if res:
                imres['Succeeded'] += res['Succeeded']
                imres['BeginTime'] += res['BeginTime']
                imres['EndTime'] += res['EndTime']
                imres['ImageName'] += res['ImageName']
                imres['Spw'] += [spwstr] * len(res['ImageName'])
                imres['Vis'] += [msfile] * len(res['ImageName'])
            else:
                continue

    if len(vis) == 1:
        # produce the band-by-band whole-day images
        ms.open(msfile)
        ms.selectinit()
        timfreq = ms.getdata(['time', 'axis_info'], ifraxis=True)
        tim = timfreq['time']
        ms.close()

        cfreqs = getspwfreq(msfile)
        imdir = imagedir + subdir[0]
        if not os.path.exists(imdir):
            os.makedirs(imdir)
        for spw in spws:
            antenna = antenna0
            if spw == '':
                spw = '{:d}~{:d}'.format(
                    next(x[0] for x in enumerate(cfreqs)
                         if x[1] > lowcutoff_freq),
                    len(cfreqs) - 1)
            spwran = [s.zfill(2) for s in spw.split('~')]
            freqran = [cfreqs[int(s)] for s in spw.split('~')]
            cfreq = np.mean(freqran)
            bmsz = max(150. / cfreq, 20.)
            uvrange = ''
            imsize = 512
            cell = ['5arcsec']
            if len(spwran) == 2:
                spwstr = spwran[0] + '~' + spwran[1]
            else:
                spwstr = spwran[0]

            restoringbeam = ['{0:.1f}arcsec'.format(bmsz)]
            imagesuffix = '.synoptic.spw' + spwstr.replace('~', '-')
            antenna = antenna + ';!0&1'  # deselect the shortest baselines

            res = ptclean3(vis=msfile,
                           imageprefix=imdir,
                           imagesuffix=imagesuffix,
                           twidth=len(tim),
                           uvrange=uvrange,
                           spw=spw,
                           ncpu=1,
                           niter=0,
                           gain=0.05,
                           antenna=antenna,
                           imsize=imsize,
                           cell=cell,
                           stokes=stokes,
                           doreg=True,
                           usephacenter=False,
                           overwrite=overwrite,
                           toTb=toTb,
                           restoringbeam=restoringbeam,
                           specmode="mfs",
                           deconvolver="hogbom",
                           datacolumn='data',
                           pbcor=True)
            if res:
                imres['Synoptic']['Succeeded'] += res['Succeeded']
                imres['Synoptic']['BeginTime'] += res['BeginTime']
                imres['Synoptic']['EndTime'] += res['EndTime']
                imres['Synoptic']['ImageName'] += res['ImageName']
                imres['Synoptic']['Spw'] += [spwstr] * len(res['ImageName'])
                imres['Synoptic']['Vis'] += [msfile] * len(res['ImageName'])
            else:
                continue

    # save it for debugging purposes
    np.savez('imres.npz', imres=imres)

    return imres
Ejemplo n.º 16
0
def WEI_plot(dofile=True,
             vis=None,
             timerange=None,
             spw='',
             aiafits='',
             imagehead='',
             workdir='',
             spwCol=3,
             phasecenter='J2000 11h00m48 06d14m60'):
    if vis[-1] == '/':
        vis = vis[:-1]
    ms.open(vis)
    spwInfo = ms.getspectralwindowinfo()
    ms.close()
    tb.open(vis)
    starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    endtim = Time(tb.getcell('TIME',
                             tb.nrows() - 1) / 24. / 3600.,
                  format='mjd')
    tb.close()
    tb.open(vis + '/SPECTRAL_WINDOW')
    reffreqs = tb.getcol('REF_FREQUENCY')
    bdwds = tb.getcol('TOTAL_BANDWIDTH')
    cfreqs = reffreqs + bdwds / 2.
    tb.close()
    sbeam = 35.
    #get timerange from vis file
    if not timerange:
        timerange = '{0}~{1}'.format(
            starttim.iso.replace('-', '/').replace(' ', '/'),
            endtim.iso.replace('-', '/').replace(' ', '/'))
    nspw = len(spwInfo)
    #draw plot aia
    fig = plt.figure(figsize=(12, 7), dpi=100)
    gs1 = gridspec.GridSpec(4, 3)
    gs1.update(left=0.08, right=0.32, wspace=0.05)
    ax1 = plt.subplot(gs1[11])
    aiamap = smap.Map(aiafits)
    aiamap.plot(axes=ax1)
    #do clean spwCol by spwCol
    for cur_spwCol in range(0, np.floor_divide(nspw, spwCol)):
        if ((cur_spwCol + 1) * spwCol) < nspw:
            cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + str(
                (cur_spwCol + 1) * spwCol)
        else:
            cur_spwRange = str(cur_spwCol * spwCol + 1) + '~' + '31'
        imagename = imagehead + cur_spwRange + 'SPWs'
        cur_eovsaFits = imagename + '.fits'
        if cur_spwCol < 6:
            cur_mask = '/srg/ywei/data/eovsa/mask/sep_6mask_' + str(
                cur_spwCol + 1) + '.rgn'
        else:
            cur_mask = '/srg/ywei/data/eovsa/mask/sep_6/mask_6.rgn'
        if dofile:
            #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[256,256], niter=100, cell=['2arcsec'] )
            #clean(vis=vis, spw=cur_spwRange, timerange=timerange, imagename=imagename, imsize=[512,512], niter=1000, cell=['1arcsec'],stokes='XX', gain=0.05,weighting='briggs', mode='mfs',imagermode='csclean',psfmode='clark',robust=0.0,restoringbeam = ['10.0arcsec'], mask=cur_mask,pbcor=True)
            clean(vis=vis,
                  spw=cur_spwRange,
                  timerange=timerange,
                  imagename=imagename,
                  imsize=[512, 512],
                  niter=1000,
                  cell=['1arcsec'],
                  stokes='XX',
                  gain=0.05,
                  weighting='briggs',
                  mode='mfs',
                  imagermode='csclean',
                  psfmode='clark',
                  robust=0.0,
                  restoringbeam=['10.0arcsec'],
                  mask='',
                  pbcor=True)
            print 'fits name =' + str(cur_eovsaFits)
            hf.imreg(vis=vis,
                     imagefile=imagename + '.image',
                     fitsfile=imagename + '.fits',
                     timerange=timerange)
        #plot eovsa
        cur_emap = smap.Map(cur_eovsaFits)
        cur_axname = plt.subplot(gs1[cur_spwCol + 1])
        (npol, nf, nx, ny) = cur_emap.data.shape
        print 'shape = ' + str(cur_emap.data.shape)
        if npol != 1:
            print 'To be determined'
        else:
            cur_emap.data = cur_emap.data.reshape((512, 512))
            cur_emap.plot_settings['cmap'] = plt.get_cmap('jet')
            cur_emap.plot(axes=cur_axname)
Ejemplo n.º 17
0
def make_ephem(vis, ephemfile=None):
    import urllib2, ssl
    from taskinit import tb
    quantities = ['1', '14', '15', '17', '19', '20', '24', '32']
    quantities = ','.join(quantities)
    tb.open(vis)
    btime = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    etime = Time(tb.getcell('TIME',
                            tb.nrows() - 1) / 24. / 3600.,
                 format='mjd')
    tb.close()
    print "Beginning time of this scan " + btime.iso
    print "End time of this scan " + etime.iso

    btime = Time((btime.mjd - 1.0 / 60. / 24.), format='mjd')
    etime = Time((etime.mjd + 1.0 / 60. / 24.), format='mjd')
    startdate = btime.iso.replace(' ', ',')[:-7]
    enddate = etime.iso.replace(' ', ',')[:-7]
    cmd = [
        "COMMAND= '10'", "CENTER= '-5@399'", "MAKE_EPHEM= 'YES'",
        "TABLE_TYPE= 'OBSERVER'",
        "START_TIME= '%s'" % startdate,
        "STOP_TIME= '%s'" % enddate, "STEP_SIZE= '1m'", "CAL_FORMAT= 'CAL'",
        "TIME_DIGITS= 'MINUTES'", "ANG_FORMAT= 'DEG'", "OUT_UNITS= 'KM-S'",
        "RANGE_UNITS= 'AU'", "APPARENT= 'AIRLESS'", "SOLAR_ELONG= '0,180'",
        "SUPPRESS_RANGE_RATE= 'NO'", "SKIP_DAYLT= 'NO'", "EXTRA_PREC= 'NO'",
        "R_T_S_ONLY= 'NO'", "REF_SYSTEM= 'J2000'", "CSV_FORMAT= 'YES'",
        "OBJ_DATA= 'YES'", "TIME_DIGITS ='MIN'",
        "QUANTITIES= '{}'".format(quantities)
    ]
    cmdstr = "http://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=l&" + '&'.join(
        cmd)
    try:
        context = ssl._create_unverified_context()
        f = urllib2.urlopen(cmdstr, context=context)
    except:
        f = urllib2.urlopen(cmdstr)
    lines = f.readlines()
    f.close()
    istart = 0
    for i, l in enumerate(lines):
        if l[0:5] == '$$SOE':  # start recording
            istart = i + 1
        if l[0:5] == '$$EOE':  # end recording
            iend = i

    if not ephemfile:
        ephemfile = 'sun-ephem-geo.txt'
    with open(ephemfile, 'w') as fb:
        for i, l in enumerate(lines):
            if i == istart - 3:
                fb.write(
                    ' Date__(UT)__HR:MN     R.A.___(J2000.0)___DEC. Ob-lon Ob-lat Sl-lon Sl-lat   NP.ang   NP.dist               r        rdot            delta      deldot    S-T-O'
                )
            if i >= istart and i < iend:
                l_s = l.split(',')
                l_s.pop(1)
                l_s.pop(1)
                fb.write(' '.join(l_s))
            else:
                fb.write(l)
Ejemplo n.º 18
0
def calc_phasecenter_from_solxy(vis,
                                timerange='',
                                xycen=None,
                                usemsphacenter=True):
    '''
    return the phase center in RA and DEC of a given solar coordinates

    :param vis: input measurement sets file
    :param timerange: can be a string or astropy.time.core.Time object, or a 2-element list of string or Time object
    :param xycen:  solar x-pos and y-pos in arcsec
    :param usemsphacenter:
    :return:
    phasecenter
    midtim: mid time of the given timerange
    '''
    tb.open(vis + '/POINTING')
    tst = Time(tb.getcell('TIME_ORIGIN', 0) / 24. / 3600., format='mjd')
    ted = Time(tb.getcell('TIME_ORIGIN',
                          tb.nrows() - 1) / 24. / 3600.,
               format='mjd')
    tb.close()
    datstr = tst.iso[:10]

    if isinstance(timerange, Time):
        try:
            (sttim, edtim) = timerange
        except:
            sttim = timerange
            edtim = sttim
    else:
        if timerange == '':
            sttim = tst
            edtim = ted
        else:
            try:
                (tstart, tend) = timerange.split('~')
                if tstart[2] == ':':
                    sttim = Time(datstr + 'T' + tstart)
                    edtim = Time(datstr + 'T' + tend)
                    # timerange = '{0}/{1}~{0}/{2}'.format(datstr.replace('-', '/'), tstart, tend)
                else:
                    sttim = Time(qa.quantity(tstart, 'd')['value'],
                                 format='mjd')
                    edtim = Time(qa.quantity(tend, 'd')['value'], format='mjd')
            except:
                try:
                    if timerange[2] == ':':
                        sttim = Time(datstr + 'T' + timerange)
                        edtim = sttim
                    else:
                        sttim = Time(qa.quantity(timerange, 'd')['value'],
                                     format='mjd')
                        edtim = sttim
                except ValueError:
                    print("keyword 'timerange' in wrong format")

    ms.open(vis)
    metadata = ms.metadata()
    observatory = metadata.observatorynames()[0]
    ms.close()

    midtim_mjd = (sttim.mjd + edtim.mjd) / 2.
    midtim = Time(midtim_mjd, format='mjd')
    eph = read_horizons(t0=midtim)
    if observatory == 'EOVSA' or (not usemsphacenter):
        print('This is EOVSA data')
        # use RA and DEC from FIELD ID 0
        tb.open(vis + '/FIELD')
        phadir = tb.getcol('PHASE_DIR').flatten()
        tb.close()
        ra0 = phadir[0]
        dec0 = phadir[1]
    else:
        ra0 = eph['ra'][0]
        dec0 = eph['dec'][0]

    if not xycen:
        # use solar disk center as default
        phasecenter = 'J2000 ' + str(ra0) + 'rad ' + str(dec0) + 'rad'
    else:
        x0 = np.radians(xycen[0] / 3600.)
        y0 = np.radians(xycen[1] / 3600.)
        p0 = np.radians(eph['p0'][0])  # p angle in radians
        raoff = -((x0) * np.cos(p0) - y0 * np.sin(p0)) / np.cos(eph['dec'][0])
        decoff = (x0) * np.sin(p0) + y0 * np.cos(p0)
        newra = ra0 + raoff
        newdec = dec0 + decoff
        phasecenter = 'J2000 ' + str(newra) + 'rad ' + str(newdec) + 'rad'
    return phasecenter, midtim
Ejemplo n.º 19
0
def read_horizons(t0=None,
                  dur=None,
                  vis=None,
                  observatory=None,
                  verbose=False):
    '''
    This function visits JPL Horizons to retrieve J2000 topocentric RA and DEC of the solar disk center
    as a function of time.

    Keyword arguments:
    t0: Referece time in astropy.Time format
    dur: duration of the returned coordinates. Default to 2 minutes
    vis: CASA visibility dataset (in measurement set format). If provided, use entire duration from
         the visibility data
    observatory: observatory code (from JPL Horizons). If not provided, use information from visibility.
         if no visibility found, use earth center (code=500)
    verbose: True to provide extra information

    Usage:
    >>> from astropy.time import Time
    >>> out = read_horizons(t0=Time('2017-09-10 16:00:00'), observatory='-81')
    >>> out = read_horizons(vis = 'mydata.ms')

    History:
    BC (sometime in 2014): function was first wrote, followed by a number of edits by BC and SY
    BC (2019-07-16): Added docstring documentation

    '''
    try:
        # For Python 3.0 and later
        from urllib.request import urlopen
    except ImportError:
        # Fall back to Python 2's urllib2
        from urllib2 import urlopen
    import ssl
    if not t0 and not vis:
        t0 = Time.now()
    if not dur:
        dur = 1. / 60. / 24.  # default to 2 minutes
    if t0:
        try:
            btime = Time(t0)
        except:
            print('input time ' + str(t0) + ' not recognized')
            return -1
    if vis:
        if not os.path.exists(vis):
            print('Input ms data ' + vis + ' does not exist! ')
            return -1
        try:
            # ms.open(vis)
            # summary = ms.summary()
            # ms.close()
            # btime = Time(summary['BeginTime'], format='mjd')
            # etime = Time(summary['EndTime'], format='mjd')
            ## alternative way to avoid conflicts with importeovsa, if needed -- more time consuming
            if observatory == 'geocentric':
                observatory = '500'
            else:
                ms.open(vis)
                metadata = ms.metadata()
                if metadata.observatorynames()[0] == 'EVLA':
                    observatory = '-5'
                elif metadata.observatorynames()[0] == 'EOVSA':
                    observatory = '-81'
                elif metadata.observatorynames()[0] == 'ALMA':
                    observatory = '-7'
                ms.close()
            tb.open(vis)
            btime_vis = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
            etime_vis = Time(tb.getcell('TIME',
                                        tb.nrows() - 1) / 24. / 3600.,
                             format='mjd')
            tb.close()
            if verbose:
                print("Beginning time of this scan " + btime_vis.iso)
                print("End time of this scan " + etime_vis.iso)

            # extend the start and end time for jpl horizons by 0.5 hr on each end
            btime = Time(btime_vis.mjd - 0.5 / 24., format='mjd')
            dur = etime_vis.mjd - btime_vis.mjd + 1.0 / 24.
        except:
            print('error in reading ms file: ' + vis +
                  ' to obtain the ephemeris!')
            return -1

    # default the observatory to geocentric, if none provided
    if not observatory:
        observatory = '500'

    etime = Time(btime.mjd + dur, format='mjd')

    try:
        cmdstr = "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&TABLE_TYPE='OBSERVER'&QUANTITIES='1,17,20'&CSV_FORMAT='YES'&ANG_FORMAT='DEG'&CAL_FORMAT='BOTH'&SOLAR_ELONG='0,180'&CENTER='{}@399'&COMMAND='10'&START_TIME='".format(
            observatory
        ) + btime.iso.replace(
            ' ', ','
        ) + "'&STOP_TIME='" + etime.iso[:-4].replace(
            ' ', ','
        ) + "'&STEP_SIZE='1m'&SKIP_DAYLT='NO'&EXTRA_PREC='YES'&APPARENT='REFRACTED'"
        cmdstr = cmdstr.replace("'", "%27")
        try:
            context = ssl._create_unverified_context()
            f = urlopen(cmdstr, context=context)
        except:
            f = urlopen(cmdstr)
        lines = f.readlines()
        f.close()
    except:
        # todo use geocentric coordinate for the new VLA data
        import requests, collections
        params = collections.OrderedDict()
        params['batch'] = '1'
        params['TABLE_TYPE'] = "'OBSERVER'"
        params['QUANTITIES'] = "'1,17,20'"
        params['CSV_FORMAT'] = "'YES'"
        params['ANG_FORMAT'] = "'DEG'"
        params['CAL_FORMAT'] = "'BOTH'"
        params['SOLAR_ELONG'] = "'0,180'"
        if observatory == '500':
            params['CENTER'] = "'500'"
        else:
            params['CENTER'] = "'{}@399'".format(observatory)
        params['COMMAND'] = "'10'"
        params['START_TIME'] = "'{}'".format(btime.iso[:-4].replace(' ', ','))
        params['STOP_TIME'] = "'{}'".format(etime.iso[:-4].replace(' ', ','))
        params['STEP_SIZE'] = "'1m'"
        params['SKIP_DAYLT'] = "'NO'"
        params['EXTRA_PREC'] = "'YES'"
        params['APPAENT'] = "'REFRACTED'"
        results = requests.get("https://ssd.jpl.nasa.gov/horizons_batch.cgi",
                               params=params)
        lines = [ll for ll in results.iter_lines()]

    # add a check for python 3
    if py3:
        lines = [l.decode('utf-8', 'backslashreplace') for l in lines]

    nline = len(lines)
    istart = 0
    for i in range(nline):
        if lines[i][0:5] == '$$SOE':  # start recording
            istart = i + 1
        if lines[i][0:5] == '$$EOE':  # end recording
            iend = i
    newlines = lines[istart:iend]
    nrec = len(newlines)
    ephem_ = []
    t = []
    ra = []
    dec = []
    p0 = []
    delta = []
    for line in newlines:
        items = line.split(',')
        t.append(Time(float(items[1]), format='jd').mjd)
        ra.append(np.radians(float(items[4])))
        dec.append(np.radians(float(items[5])))
        p0.append(float(items[6]))
        delta.append(float(items[8]))
    # convert list of dictionary to a dictionary of arrays
    ephem = {'time': t, 'ra': ra, 'dec': dec, 'p0': p0, 'delta': delta}
    return ephem
Ejemplo n.º 20
0
def concateovsa(vis, concatvis, datacolumn='corrected', keep_orig_ms=True, cols2rm="model,corrected", freqtol="", dirtol="", respectname=False,
                timesort=True, copypointing=True, visweightscale=[], forcesingleephemfield=""):
    if concatvis[-1] == os.path.sep:
        concatvis = concatvis[:-1]
    if os.path.sep not in concatvis:
        visprefix = './'
    else:
        visprefix = os.path.dirname(concatvis) + os.path.sep
    msfiles = vis
    msfiles_ = []
    for idx, ll in enumerate(msfiles):
        if str(ll).endswith('/'):
            msfiles[idx] = str(ll)[:-1]
    datacolumn = datacolumn.lower()
    if datacolumn == 'data':
        print 'DATA columns will be concatenated.'
        for ll in msfiles:
            clearcal(vis=str(ll), addmodel=True)
    elif datacolumn == 'corrected':
        # try:
        print 'CORRECTED columns will be concatenated.'
        tmpdir = os.path.join(visprefix, 'tmp_ms') + os.path.sep
        if not os.path.exists(tmpdir):
            os.makedirs(tmpdir)
        for ll in msfiles:
            msfile_ = os.path.join(tmpdir, os.path.basename(str(ll)))
            msfiles_.append(msfile_)
            split(vis=str(ll), outputvis=msfile_, datacolumn='corrected')
            clearcal(vis=msfile_, addmodel=True)
    else:
        raise ValueError('Please set datacolumn to be "data" or "corrected"!')

    if msfiles_:
        concat(vis=msfiles_, concatvis=concatvis, freqtol=freqtol, dirtol=dirtol, respectname=respectname, timesort=timesort,
               copypointing=copypointing, visweightscale=visweightscale, forcesingleephemfield=forcesingleephemfield)
        os.system('rm -rf {}'.format(tmpdir))
    else:
        concat(vis=msfiles, concatvis=concatvis, freqtol=freqtol, dirtol=dirtol, respectname=respectname, timesort=timesort,
               copypointing=copypointing, visweightscale=visweightscale, forcesingleephemfield=forcesingleephemfield)
    # Change all observation ids to be the same (zero)
    tb.open(concatvis + '/OBSERVATION', nomodify=False)
    nobs = tb.nrows()
    tim0 = tb.getcell('TIME_RANGE', 0)[0]
    tim1 = tb.getcell('TIME_RANGE', nobs - 1)[1]
    tb.removerows([i + 1 for i in range(nobs - 1)])
    tb.putcell('TIME_RANGE', 0, [tim0, tim1])
    tb.close()

    tb.open(concatvis + '/DATA_DESCRIPTION', nomodify=False)
    nrows = tb.nrows()
    pol_id = tb.getcol('POLARIZATION_ID')
    tb.removerows(np.where(pol_id != 0)[0])
    tb.close()

    tb.open(concatvis, nomodify=False)
    dd_id = tb.getcol('DATA_DESC_ID')
    idx_dd_id, = np.where(dd_id >= nrows / 2)
    dd_id[idx_dd_id] = dd_id[idx_dd_id] - nrows / 2
    tb.putcol('DATA_DESC_ID', dd_id)
    tb.close()

    tb.open(concatvis + '/FIELD', nomodify=False)
    nobs = tb.nrows()
    tb.removerows([i + 1 for i in range(nobs - 1)])
    tb.close()

    tb.open(concatvis + '/SOURCE', nomodify=False)
    nobs = tb.nrows()
    tb.removerows([i + 1 for i in range(nobs - 1)])
    tb.close()

    tb.open(concatvis, nomodify=False)
    obsid = tb.getcol('OBSERVATION_ID')
    newobsid = np.zeros(len(obsid), dtype='int')
    tb.putcol('OBSERVATION_ID', newobsid)
    fldid = tb.getcol('FIELD_ID')
    newfldid = np.zeros(len(fldid), dtype='int')
    tb.putcol('FIELD_ID', newfldid)
    colnames = tb.colnames()

    cols2rm = cols2rm.upper()
    cols2rm = cols2rm.split(',')
    for l in range(len(cols2rm)):
        col = cols2rm[l] + '_DATA'
        if col in colnames:
            try:
                tb.removecols(col)
                print 'Column {} removed.'.format(col)
            except:
                pass
    tb.close()

    if msfiles_ != [] and msfiles_ != msfiles:
        for ll in msfiles_:
            os.system('rm -rf {}'.format(ll))
    if not keep_orig_ms:
        for ll in msfiles:
            os.system('rm -rf {}'.format(ll))
Ejemplo n.º 21
0
def calibeovsa(vis=None,
               caltype=None,
               interp=None,
               docalib=True,
               doflag=True,
               flagant=None,
               doimage=False,
               imagedir=None,
               antenna=None,
               timerange=None,
               spw=None,
               stokes=None,
               doconcat=False,
               msoutdir=None,
               keep_orig_ms=True):
    '''

    :param vis: EOVSA visibility dataset(s) to be calibrated 
    :param caltype:
    :param interp:
    :param docalib:
    :param qlookimage:
    :param flagant:
    :param stokes:
    :param doconcat:
    :return:
    '''

    if type(vis) == str:
        vis = [vis]

    for idx, f in enumerate(vis):
        if f[-1] == '/':
            vis[idx] = f[:-1]

    for msfile in vis:
        casalog.origin('calibeovsa')
        if not caltype:
            casalog.post(
                "Caltype not provided. Perform reference phase calibration and daily phase calibration."
            )
            caltype = [
                'refpha', 'phacal', 'fluxcal'
            ]  ## use this line after the phacal is applied  # caltype = ['refcal']
        if not os.path.exists(msfile):
            casalog.post("Input visibility does not exist. Aborting...")
            continue
        if msfile.endswith('/'):
            msfile = msfile[:-1]
        if not msfile[-3:] in ['.ms', '.MS']:
            casalog.post(
                "Invalid visibility. Please provide a proper visibility file ending with .ms"
            )
        # if not caltable:
        #    caltable=[os.path.basename(vis).replace('.ms','.'+c) for c in caltype]

        # get band information
        tb.open(msfile + '/SPECTRAL_WINDOW')
        nspw = tb.nrows()
        bdname = tb.getcol('NAME')
        bd_nchan = tb.getcol('NUM_CHAN')
        bd = [int(b[4:]) - 1 for b in bdname]  # band index from 0 to 33
        # nchans = tb.getcol('NUM_CHAN')
        # reffreqs = tb.getcol('REF_FREQUENCY')
        # cenfreqs = np.zeros((nspw))
        tb.close()
        tb.open(msfile + '/ANTENNA')
        nant = tb.nrows()
        antname = tb.getcol('NAME')
        antlist = [str(ll) for ll in range(len(antname) - 1)]
        antennas = ','.join(antlist)
        tb.close()

        # get time stamp, use the beginning of the file
        tb.open(msfile + '/OBSERVATION')
        trs = {'BegTime': [], 'EndTime': []}
        for ll in range(tb.nrows()):
            tim0, tim1 = Time(tb.getcell('TIME_RANGE', ll) / 24 / 3600,
                              format='mjd')
            trs['BegTime'].append(tim0)
            trs['EndTime'].append(tim1)
        tb.close()
        trs['BegTime'] = Time(trs['BegTime'])
        trs['EndTime'] = Time(trs['EndTime'])
        btime = np.min(trs['BegTime'])
        etime = np.max(trs['EndTime'])
        # ms.open(vis)
        # summary = ms.summary()
        # ms.close()
        # btime = Time(summary['BeginTime'], format='mjd')
        # etime = Time(summary['EndTime'], format='mjd')
        ## stop using ms.summary to avoid conflicts with importeovsa
        t_mid = Time((btime.mjd + etime.mjd) / 2., format='mjd')
        print "This scan observed from {} to {} UTC".format(
            btime.iso, etime.iso)
        gaintables = []

        if ('refpha' in caltype) or ('refamp' in caltype) or ('refcal'
                                                              in caltype):
            refcal = ra.sql2refcalX(btime)
            pha = refcal['pha']  # shape is 15 (nant) x 2 (npol) x 34 (nband)
            pha[np.where(refcal['flag'] == 1)] = 0.
            amp = refcal['amp']
            amp[np.where(refcal['flag'] == 1)] = 1.
            t_ref = refcal['timestamp']
            # find the start and end time of the local day when refcal is registered
            try:
                dhr = t_ref.LocalTime.utcoffset().total_seconds() / 60. / 60.
            except:
                dhr = -7.
            bt = Time(np.fix(t_ref.mjd + dhr / 24.) - dhr / 24., format='mjd')
            et = Time(bt.mjd + 1., format='mjd')
            (yr, mon, day) = (bt.datetime.year, bt.datetime.month,
                              bt.datetime.day)
            dirname = caltbdir + str(yr) + str(mon).zfill(2) + '/'
            if not os.path.exists(dirname):
                os.mkdir(dirname)
            # check if there is any ROACH reboot between the reference calibration found and the current data
            t_rbts = db.get_reboot(Time([t_ref, btime]))
            if not t_rbts:
                casalog.post(
                    "Reference calibration is derived from observation at " +
                    t_ref.iso)
                print "Reference calibration is derived from observation at " + t_ref.iso
            else:
                casalog.post(
                    "Oh crap! Roach reboot detected between the reference calibration time "
                    + t_ref.iso + ' and the current observation at ' +
                    btime.iso)
                casalog.post("Aborting...")
                print "Oh crap! Roach reboot detected between the reference calibration time " + t_ref.iso + ' and the current observation at ' + btime.iso
                print "Aborting..."

            para_pha = []
            para_amp = []
            calpha = np.zeros((nspw, 15, 2))
            calamp = np.zeros((nspw, 15, 2))
            for s in range(nspw):
                for n in range(15):
                    for p in range(2):
                        calpha[s, n, p] = pha[n, p, bd[s]]
                        calamp[s, n, p] = amp[n, p, bd[s]]
                        para_pha.append(np.degrees(pha[n, p, bd[s]]))
                        para_amp.append(amp[n, p, bd[s]])

        if 'fluxcal' in caltype:
            calfac = pc.get_calfac(Time(t_mid.iso.split(' ')[0] + 'T23:59:59'))
            t_bp = Time(calfac['timestamp'], format='lv')
            if int(t_mid.mjd) == int(t_bp.mjd):
                accalfac = calfac['accalfac']  # (ant x pol x freq)
                # tpcalfac = calfac['tpcalfac']  # (ant x pol x freq)
                caltb_autoamp = dirname + t_bp.isot[:-4].replace(
                    ':', '').replace('-', '') + '.bandpass'
                if not os.path.exists(caltb_autoamp):
                    bandpass(vis=msfile,
                             caltable=caltb_autoamp,
                             solint='inf',
                             refant='eo01',
                             minblperant=0,
                             minsnr=0,
                             bandtype='B',
                             docallib=False)
                    tb.open(caltb_autoamp, nomodify=False)  # (ant x spw)
                    bd_chanidx = np.hstack([[0], bd_nchan.cumsum()])
                    for ll in range(nspw):
                        antfac = np.sqrt(
                            accalfac[:, :, bd_chanidx[ll]:bd_chanidx[ll + 1]])
                        # # antfac *= tpcalfac[:, :,bd_chanidx[ll]:bd_chanidx[ll + 1]]
                        antfac = np.moveaxis(antfac, 0, 2)
                        cparam = np.zeros((2, bd_nchan[ll], nant))
                        cparam[:, :, :-3] = 1.0 / antfac
                        tb.putcol('CPARAM', cparam + 0j, ll * nant, nant)
                        paramerr = tb.getcol('PARAMERR', ll * nant, nant)
                        paramerr = paramerr * 0
                        tb.putcol('PARAMERR', paramerr, ll * nant, nant)
                        bpflag = tb.getcol('FLAG', ll * nant, nant)
                        bpant1 = tb.getcol('ANTENNA1', ll * nant, nant)
                        bpflagidx, = np.where(bpant1 >= 13)
                        bpflag[:] = False
                        bpflag[:, :, bpflagidx] = True
                        tb.putcol('FLAG', bpflag, ll * nant, nant)
                        bpsnr = tb.getcol('SNR', ll * nant, nant)
                        bpsnr[:] = 100.0
                        bpsnr[:, :, bpflagidx] = 0.0
                        tb.putcol('SNR', bpsnr, ll * nant, nant)
                    tb.close()
                    msg_prompt = "Scaling calibration is derived for {}.".format(
                        msfile)
                    casalog.post(msg_prompt)
                    print msg_prompt
                gaintables.append(caltb_autoamp)
            else:
                msg_prompt = "Caution: No TPCAL is available on {}. No scaling calibration is derived for {}.".format(
                    t_mid.datetime.strftime('%b %d, %Y'), msfile)
                casalog.post(msg_prompt)
                print msg_prompt

        if ('refpha' in caltype) or ('refcal' in caltype):
            # caltb_pha = os.path.basename(vis).replace('.ms', '.refpha')
            # check if the calibration table already exists
            caltb_pha = dirname + t_ref.isot[:-4].replace(':', '').replace(
                '-', '') + '.refpha'
            if not os.path.exists(caltb_pha):
                gencal(vis=msfile,
                       caltable=caltb_pha,
                       caltype='ph',
                       antenna=antennas,
                       pol='X,Y',
                       spw='0~' + str(nspw - 1),
                       parameter=para_pha)
            gaintables.append(caltb_pha)
        if ('refamp' in caltype) or ('refcal' in caltype):
            # caltb_amp = os.path.basename(vis).replace('.ms', '.refamp')
            caltb_amp = dirname + t_ref.isot[:-4].replace(':', '').replace(
                '-', '') + '.refamp'
            if not os.path.exists(caltb_amp):
                gencal(vis=msfile,
                       caltable=caltb_amp,
                       caltype='amp',
                       antenna=antennas,
                       pol='X,Y',
                       spw='0~' + str(nspw - 1),
                       parameter=para_amp)
            gaintables.append(caltb_amp)

        # calibration for the change of delay center between refcal time and beginning of scan -- hopefully none!
        xml, buf = ch.read_calX(4, t=[t_ref, btime], verbose=False)
        if buf:
            dly_t2 = Time(stf.extract(buf[0], xml['Timestamp']), format='lv')
            dlycen_ns2 = stf.extract(buf[0], xml['Delaycen_ns'])[:15]
            xml, buf = ch.read_calX(4, t=t_ref)
            dly_t1 = Time(stf.extract(buf, xml['Timestamp']), format='lv')
            dlycen_ns1 = stf.extract(buf, xml['Delaycen_ns'])[:15]
            dlycen_ns_diff = dlycen_ns2 - dlycen_ns1
            for n in range(2):
                dlycen_ns_diff[:, n] -= dlycen_ns_diff[0, n]
            print 'Multi-band delay is derived from delay center difference at {} & {}'.format(
                dly_t1.iso, dly_t2.iso)
            # print '=====Delays relative to Ant 14====='
            # for i, dl in enumerate(dlacen_ns_diff[:, 0] - dlacen_ns_diff[13, 0]):
            #     ant = antlist[i]
            #     print 'Ant eo{0:02d}: x {1:.2f} ns & y {2:.2f} ns'.format(int(ant) + 1, dl
            #           dlacen_ns_diff[i, 1] - dlacen_ns_diff[13, 1])
            # caltb_mbd0 = os.path.basename(vis).replace('.ms', '.mbd0')
            caltb_dlycen = dirname + dly_t2.isot[:-4].replace(':', '').replace(
                '-', '') + '.dlycen'
            if not os.path.exists(caltb_dlycen):
                gencal(vis=msfile,
                       caltable=caltb_dlycen,
                       caltype='mbd',
                       pol='X,Y',
                       antenna=antennas,
                       parameter=dlycen_ns_diff.flatten().tolist())
            gaintables.append(caltb_dlycen)

        if 'phacal' in caltype:
            phacals = np.array(
                ra.sql2phacalX([bt, et], neat=True, verbose=False))
            if not phacals.any() or len(phacals) == 0:
                print "Found no phacal records in SQL database, will skip phase calibration"
            else:
                # first generate all phacal calibration tables if not already exist
                t_phas = Time([phacal['t_pha'] for phacal in phacals])
                # sort the array in ascending order by t_pha
                sinds = t_phas.mjd.argsort()
                t_phas = t_phas[sinds]
                phacals = phacals[sinds]
                caltbs_phambd = []
                for i, phacal in enumerate(phacals):
                    # filter out phase cals with reference time stamp >30 min away from the provided refcal time
                    if (phacal['t_ref'].jd -
                            refcal['timestamp'].jd) > 30. / 1440.:
                        del phacals[i]
                        del t_phas[i]
                        continue
                    else:
                        t_pha = phacal['t_pha']
                        phambd_ns = phacal['pslope']
                        for n in range(2):
                            phambd_ns[:, n] -= phambd_ns[0, n]
                        # set all flagged values to be zero
                        phambd_ns[np.where(phacal['flag'] == 1)] = 0.
                        caltb_phambd = dirname + t_pha.isot[:-4].replace(
                            ':', '').replace('-', '') + '.phambd'
                        caltbs_phambd.append(caltb_phambd)
                        if not os.path.exists(caltb_phambd):
                            gencal(vis=msfile,
                                   caltable=caltb_phambd,
                                   caltype='mbd',
                                   pol='X,Y',
                                   antenna=antennas,
                                   parameter=phambd_ns.flatten().tolist())

                # now decides which table to apply depending on the interpolation method ("neatest" or "linear")
                if interp == 'nearest':
                    tbind = np.argmin(np.abs(t_phas.mjd - t_mid.mjd))
                    dt = np.min(np.abs(t_phas.mjd - t_mid.mjd)) * 24.
                    print "Selected nearest phase calibration table at " + t_phas[
                        tbind].iso
                    gaintables.append(caltbs_phambd[tbind])
                if interp == 'linear':
                    # bphacal = ra.sql2phacalX(btime)
                    # ephacal = ra.sql2phacalX(etime,reverse=True)
                    bt_ind, = np.where(t_phas.mjd < btime.mjd)
                    et_ind, = np.where(t_phas.mjd > etime.mjd)
                    if len(bt_ind) == 0 and len(et_ind) == 0:
                        print "No phacal found before or after the ms data within the day of observation"
                        print "Skipping daily phase calibration"
                    elif len(bt_ind) > 0 and len(et_ind) == 0:
                        gaintables.append(caltbs_phambd[bt_ind[-1]])
                    elif len(bt_ind) == 0 and len(et_ind) > 0:
                        gaintables.append(caltbs_phambd[et_ind[0]])
                    elif len(bt_ind) > 0 and len(et_ind) > 0:
                        bphacal = phacals[bt_ind[-1]]
                        ephacal = phacals[et_ind[0]]
                        # generate a new table interpolating between two daily phase calibrations
                        t_pha_mean = Time(np.mean(
                            [bphacal['t_pha'].mjd, ephacal['t_pha'].mjd]),
                                          format='mjd')
                        phambd_ns = (bphacal['pslope'] +
                                     ephacal['pslope']) / 2.
                        for n in range(2):
                            phambd_ns[:, n] -= phambd_ns[0, n]
                        # set all flagged values to be zero
                        phambd_ns[np.where(bphacal['flag'] == 1)] = 0.
                        phambd_ns[np.where(ephacal['flag'] == 1)] = 0.
                        caltb_phambd_interp = dirname + t_pha_mean.isot[:-4].replace(
                            ':', '').replace('-', '') + '.phambd'
                        if not os.path.exists(caltb_phambd_interp):
                            gencal(vis=msfile,
                                   caltable=caltb_phambd_interp,
                                   caltype='mbd',
                                   pol='X,Y',
                                   antenna=antennas,
                                   parameter=phambd_ns.flatten().tolist())
                        print "Using phase calibration table interpolated between records at " + bphacal[
                            't_pha'].iso + ' and ' + ephacal['t_pha'].iso
                        gaintables.append(caltb_phambd_interp)

        if docalib:
            clearcal(msfile)
            applycal(vis=msfile,
                     gaintable=gaintables,
                     applymode='calflag',
                     calwt=False)
            # delete the interpolated phase calibration table
            try:
                caltb_phambd_interp
            except:
                pass
            else:
                if os.path.exists(caltb_phambd_interp):
                    shutil.rmtree(caltb_phambd_interp)
        if doflag:
            # flag zeros and NaNs
            flagdata(vis=msfile, mode='clip', clipzeros=True)
            if flagant:
                try:
                    flagdata(vis=msfile, antenna=flagant)
                except:
                    print "Something wrong with flagant. Abort..."

        if doimage:
            from matplotlib import pyplot as plt
            from suncasa.utils import helioimage2fits as hf
            from sunpy import map as smap

            if not antenna:
                antenna = '0~12'
            if not stokes:
                stokes = 'XX'
            if not timerange:
                timerange = ''
            if not spw:
                spw = '1~3'
            if not imagedir:
                imagedir = '.'
            #(yr, mon, day) = (bt.datetime.year, bt.datetime.month, bt.datetime.day)
            #dirname = imagedir + str(yr) + '/' + str(mon).zfill(2) + '/' + str(day).zfill(2) + '/'
            #if not os.path.exists(dirname):
            #    os.makedirs(dirname)
            bds = [spw]
            nbd = len(bds)
            imgs = []
            for bd in bds:
                if '~' in bd:
                    bdstr = bd.replace('~', '-')
                else:
                    bdstr = str(bd).zfill(2)
                imname = imagedir + '/' + os.path.basename(msfile).replace(
                    '.ms', '.bd' + bdstr)
                print 'Cleaning image: ' + imname
                try:
                    clean(vis=msfile,
                          imagename=imname,
                          antenna=antenna,
                          spw=bd,
                          timerange=timerange,
                          imsize=[512],
                          cell=['5.0arcsec'],
                          stokes=stokes,
                          niter=500)
                except:
                    print 'clean not successfull for band ' + str(bd)
                else:
                    imgs.append(imname + '.image')
                junks = ['.flux', '.mask', '.model', '.psf', '.residual']
                for junk in junks:
                    if os.path.exists(imname + junk):
                        shutil.rmtree(imname + junk)

            tranges = [btime.iso + '~' + etime.iso] * nbd
            fitsfiles = [img.replace('.image', '.fits') for img in imgs]
            hf.imreg(vis=msfile,
                     timerange=tranges,
                     imagefile=imgs,
                     fitsfile=fitsfiles,
                     usephacenter=False)
            plt.figure(figsize=(6, 6))
            for i, fitsfile in enumerate(fitsfiles):
                plt.subplot(1, nbd, i + 1)
                eomap = smap.Map(fitsfile)
                sz = eomap.data.shape
                if len(sz) == 4:
                    eomap.data = eomap.data.reshape((sz[2], sz[3]))
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot()
                eomap.draw_limb()
                eomap.draw_grid()

            plt.show()

    if doconcat:
        if len(vis) > 1:
            # from suncasa.eovsa import concateovsa as ce
            from suncasa.tasks import concateovsa_cli as ce
            if msoutdir is None:
                msoutdir = './'
            concatvis = os.path.basename(vis[0])
            concatvis = msoutdir + '/' + concatvis.split('.')[0] + '_concat.ms'
            ce.concateovsa(vis,
                           concatvis,
                           datacolumn='corrected',
                           keep_orig_ms=keep_orig_ms,
                           cols2rm="model,corrected")
            return [concatvis]
    else:
        return vis
Ejemplo n.º 22
0
def read_horizons(vis):
    import urllib2
    import ssl
    if not os.path.exists(vis):
        print 'Input ms data ' + vis + ' does not exist! '
        return -1
    try:
        #ms.open(vis)
        #summary = ms.summary()
        #ms.close()
        #btime = Time(summary['BeginTime'], format='mjd')
        #etime = Time(summary['EndTime'], format='mjd')
        ## alternative way to avoid conflicts with importeovsa, if needed -- more time consuming
        tb.open(vis)
        btime = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
        etime = Time(tb.getcell('TIME',
                                tb.nrows() - 1) / 24. / 3600.,
                     format='mjd')
        tb.close()
        print "Beginning time of this scan " + btime.iso
        print "End time of this scan " + etime.iso
        try:
            context = ssl._create_unverified_context()
            f = urllib2.urlopen(
                "http://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=l&TABLE_TYPE='OBSERVER'&QUANTITIES='1,17,20'&CSV_FORMAT='YES'&ANG_FORMAT='DEG'&CAL_FORMAT='BOTH'&SOLAR_ELONG='0,180'&CENTER='-81@399'&COMMAND='10'&START_TIME='"
                + btime.iso.replace(' ', ',') + "'&STOP_TIME='" +
                etime.iso[:-4].replace(' ', ',') +
                "'&STEP_SIZE='1m'&SKIP_DAYLT='NO'",
                context=context)
        except:
            f = urllib2.urlopen(
                "http://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=l&TABLE_TYPE='OBSERVER'&QUANTITIES='1,17,20'&CSV_FORMAT='YES'&ANG_FORMAT='DEG'&CAL_FORMAT='BOTH'&SOLAR_ELONG='0,180'&CENTER='-81@399'&COMMAND='10'&START_TIME='"
                + btime.iso.replace(' ', ',') + "'&STOP_TIME='" +
                etime.iso[:-4].replace(' ', ',') +
                "'&STEP_SIZE='1m'&SKIP_DAYLT='NO'")
    except:
        print 'error in reading ms file: ' + vis + ' to obtain the ephemeris!'
        return -1
    # inputs:
    #   ephemfile:
    #       OBSERVER output from JPL Horizons for topocentric coordinates with for example
    #       target=Sun, observer=VLA=-5
    #       extra precision, quantities 1,17,20, REFRACTION
    #       routine goes through file to find $$SOE which is start of ephemeris and ends with $$EOE
    # outputs: a Python dictionary containing the following:
    #   timestr: date and time as a string
    #   time: modified Julian date
    #   ra: right ascention, in rad
    #   dec: declination, in rad
    #   rastr: ra in string
    #   decstr: dec in string
    #   p0: solar p angle, CCW with respect to the celestial north pole
    #   delta: distance from the disk center to the observer, in AU
    #   delta_dot: time derivative of delta, in the light of sight direction. Negative means it is moving toward the observer
    #
    # initialize the return dictionary
    ephem0 = dict.fromkeys(['time', 'ra', 'dec', 'delta', 'p0'])
    lines = f.readlines()
    f.close()
    nline = len(lines)
    istart = 0
    for i in range(nline):
        line = lines[i]
        if line[0:5] == '$$SOE':  # start recording
            istart = i + 1
        if line[0:5] == '$$EOE':  # end recording
            iend = i
    newlines = lines[istart:iend]
    nrec = len(newlines)
    ephem_ = []
    t = []
    ra = []
    dec = []
    p0 = []
    delta = []
    for line in newlines:
        items = line.split(',')
        # t.append({'unit':'mjd','value':Time(float(items[1]),format='jd').mjd})
        # ra.append({'unit': 'rad', 'value': np.radians(float(items[4]))})
        # dec.append({'unit': 'rad', 'value': np.radians(float(items[5]))})
        # p0.append({'unit': 'deg', 'value': float(items[6])})
        # delta.append({'unit': 'au', 'value': float(items[8])})
        t.append(Time(float(items[1]), format='jd').mjd)
        ra.append(np.radians(float(items[4])))
        dec.append(np.radians(float(items[5])))
        p0.append(float(items[6]))
        delta.append(float(items[8]))
    # convert list of dictionary to a dictionary of arrays
    ephem = {'time': t, 'ra': ra, 'dec': dec, 'p0': p0, 'delta': delta}
    return ephem
Ejemplo n.º 23
0
def get_dspec(vis=None, savespec=True, specfile=None, bl='', uvrange='', field='', scan='', datacolumn='data',
              domedian=False, timeran=None, spw=None, timebin='0s', regridfreq=False, fillnan=None, verbose=False,
              usetbtool=False):
    # from split_cli import split_cli as split
    if vis.endswith('/'):
        vis = vis[:-1]
    msfile = vis
    if not spw:
        spw = ''
    if not timeran:
        timeran = ''
    if domedian:
        if not uvrange:
            uvrange = '0.2~0.8km'
        # bl = ''
    else:
        uvrange = ''
    if not bl:
        bl = ''
    else:
        uvrange = ''
    # Open the ms and plot dynamic spectrum
    if verbose:
        print('Splitting selected data...')

    if usetbtool:
        try:
            tb.open(vis + '/POLARIZATION')
            corrtype = tb.getcell('CORR_TYPE', 0)
            pols = [stokesenum[p] for p in corrtype]
            tb.close()
        except:
            pols = []

        antmask = []
        if uvrange is not '' or bl is not '':
            ms.open(vis)
            ms.selectinit(datadescid=0)
            mdata = ms.metadata()
            antlist = mdata.antennaids()
            mdata.done()
            staql = {'uvdist': uvrange, 'baseline': bl, 'spw': spw, 'field': field, 'scan': scan, 'timerange': timeran}
            ### todo the selection only works for uvrange and bl. To make the selection of other items works,
            ## I need to make mask for other items.
            a = ms.msselect(staql)
            mdata = ms.metadata()
            baselines = mdata.baselines()
            for lidx, l in enumerate(antlist):
                antmask.append(baselines[l][antlist[lidx:]])
            antmask = np.hstack(antmask)
            mdata.done()
            ms.close()

        tb.open(vis)
        spwtb = tbtool()
        spwtb.open(vis + '/SPECTRAL_WINDOW')
        ptb = tbtool()
        ptb.open(vis + '/POLARIZATION')

        ms.open(vis)
        spwlist = []
        mdata = ms.metadata()
        nspw = mdata.nspw()
        nbl = mdata.nbaselines() + mdata.nantennas()
        nscans = mdata.nscans()
        spw_nfrq = []  # List of number of frequencies in each spw
        for i in range(nspw):
            spw_nfrq.append(mdata.nchan(i))
        spw_nfrq = np.array(spw_nfrq)
        nf = np.sum(spw_nfrq)
        smry = mdata.summary()
        scan_ntimes = []  # List of number of times in each scan
        for iscan in range(nscans):
            scan_ntimes.append(
                smry['observationID=0']['arrayID=0']['scan=' + str(iscan)]['fieldID=0']['nrows'] / nspw / nbl)
        scan_ntimes = np.array(scan_ntimes)
        scan_ntimes_integer = scan_ntimes.astype(np.int)
        if len(np.where(scan_ntimes % scan_ntimes_integer != 0)[0]) != 0:
            # if True:
            scan_ntimes = []  # List of number of times in each scan
            for iscan in range(nscans):
                scan_ntimes.append(
                    len(smry['observationID=0']['arrayID=0']['scan=' + str(iscan)]['fieldID=0'].keys()) - 6)
            scan_ntimes = np.array(scan_ntimes)
        else:
            scan_ntimes = scan_ntimes_integer

        nt = np.sum(scan_ntimes)
        times = tb.getcol('TIME')
        if times[nbl] - times[0] != 0:
            # This is frequency/scan sort order
            order = 'f'
        elif times[nbl * nspw - 1] - times[0] != 0:
            # This is time sort order
            order = 't'
        npol = ptb.getcol('NUM_CORR', 0, 1)[0]
        ptb.close()
        freq = np.zeros(nf, float)
        times = np.zeros(nt, float)
        if order == 't':
            specamp = np.zeros((npol, nf, nbl, nt), np.complex)
            for j in range(nt):
                fptr = 0
                # Loop over spw
                for i in range(nspw):
                    # Get channel frequencies for this spw (annoyingly comes out as shape (nf, 1)
                    cfrq = spwtb.getcol('CHAN_FREQ', i, 1)[:, 0]
                    if j == 0:
                        # Only need this the first time through
                        spwlist += [i] * len(cfrq)
                    if i == 0:
                        times[j] = tb.getcol('TIME', nbl * (i + nspw * j), 1)  # Get the time
                    spec_ = tb.getcol('DATA', nbl * (i + nspw * j), nbl)  # Get complex data for this spw
                    flag = tb.getcol('FLAG', nbl * (i + nspw * j), nbl)  # Get flags for this spw
                    nfrq = len(cfrq)
                    # Apply flags
                    if type(fillnan) in [int, float]:
                        spec_[flag] = float(fillnan)
                    else:
                        spec_[flag] = 0.0
                    # Insert data for this spw into larger array
                    specamp[:, fptr:fptr + nfrq, :, j] = spec_
                    freq[fptr:fptr + nfrq] = cfrq
                    fptr += nfrq
        else:
            specf = np.zeros((npol, nf, nt, nbl), np.complex)  # Array indexes are swapped
            iptr = 0
            for j in range(nscans):
                # Loop over scans
                for i in range(nspw):
                    # Loop over spectral windows
                    s = scan_ntimes[j]
                    f = spw_nfrq[i]
                    s1 = np.sum(scan_ntimes[:j])  # Start time index
                    s2 = np.sum(scan_ntimes[:j + 1])  # End time index
                    f1 = np.sum(spw_nfrq[:i])  # Start freq index
                    f2 = np.sum(spw_nfrq[:i + 1])  # End freq index
                    spec_ = tb.getcol('DATA', iptr, nbl * s)
                    flag = tb.getcol('FLAG', iptr, nbl * s)
                    if j == 0:
                        cfrq = spwtb.getcol('CHAN_FREQ', i, 1)[:, 0]
                        freq[f1:f2] = cfrq
                        spwlist += [i] * len(cfrq)
                    times[s1:s2] = tb.getcol('TIME', iptr, nbl * s).reshape(s, nbl)[:, 0]  # Get the times
                    iptr += nbl * s
                    # Apply flags
                    if type(fillnan) in [int, float]:
                        spec_[flag] = float(fillnan)
                    else:
                        spec_[flag] = 0.0
                    # Insert data for this spw into larger array
                    specf[:, f1:f2, s1:s2] = spec_.reshape(npol, f, s, nbl)
                    # Swap the array indexes back to the desired order
            specamp = np.swapaxes(specf, 2, 3)
        tb.close()
        spwtb.close()
        ms.close()
        if len(antmask) > 0:
            specamp = specamp[:, :, np.where(antmask)[0], :]
        (npol, nfreq, nbl, ntim) = specamp.shape
        tim = times
    else:
        # Open the ms and plot dynamic spectrum
        if verbose:
            print('Splitting selected data...')
        vis_spl = './tmpms.splitted'
        if os.path.exists(vis_spl):
            os.system('rm -rf ' + vis_spl)

        # split(vis=msfile, outputvis=vis_spl, timerange=timeran, antenna=bl, field=field, scan=scan, spw=spw,
        #       uvrange=uvrange, timebin=timebin, datacolumn=datacolumn)

        try:
            from split_cli import split_cli as split
            split(vis=msfile, outputvis=vis_spl, datacolumn=datacolumn, timerange=timeran, spw=spw, antenna=bl,
                  field=field,
                  scan=scan, uvrange=uvrange, timebin=timebin)
        except:
            ms.open(msfile, nomodify=True)
            ms.split(outputms=vis_spl, whichcol=datacolumn, time=timeran, spw=spw, baseline=bl, field=field, scan=scan,
                     uvrange=uvrange, timebin=timebin)
            ms.close()

        if verbose:
            print('Regridding into a single spectral window...')
            # print('Reading data spw by spw')

        try:
            tb.open(vis_spl + '/POLARIZATION')
            corrtype = tb.getcell('CORR_TYPE', 0)
            pols = [stokesenum[p] for p in corrtype]
            tb.close()
        except:
            pols = []

        if regridfreq:
            ms.open(vis_spl, nomodify=False)
            ms.cvel(outframe='LSRK', mode='frequency', interp='nearest')
            ms.selectinit(datadescid=0, reset=True)
            data = ms.getdata(['amplitude', 'time', 'axis_info'], ifraxis=True)
            specamp = data['amplitude']
            freq = data['axis_info']['freq_axis']['chan_freq']
        else:
            ms.open(vis_spl)
            ms.selectinit(datadescid=0, reset=True)
            spwinfo = ms.getspectralwindowinfo()
            specamp = []
            freq = []
            time = []
            for descid in range(len(spwinfo.keys())):
                ms.selectinit(datadescid=0, reset=True)
                ms.selectinit(datadescid=descid)
                data = ms.getdata(['amplitude', 'time', 'axis_info'], ifraxis=True)
                specamp_ = data['amplitude']
                freq_ = data['axis_info']['freq_axis']['chan_freq']
                time_ = data['time']
                if fillnan is not None:
                    flag_ = ms.getdata(['flag', 'time', 'axis_info'], ifraxis=True)['flag']
                    if type(fillnan) in [int, float, long]:
                        specamp_[flag_] = float(fillnan)
                    else:
                        specamp_[flag_] = 0.0
                specamp.append(specamp_)
                freq.append(freq_)
                time.append(time_)
            specamp = np.concatenate(specamp, axis=1)
            freq = np.concatenate(freq, axis=0)
            ms.selectinit(datadescid=0, reset=True)
        ms.close()
        os.system('rm -rf ' + vis_spl)
        (npol, nfreq, nbl, ntim) = specamp.shape
        freq = freq.reshape(nfreq)

        tim = data['time']

    if verbose:
        print('npol, nfreq, nbl, ntime:', (npol, nfreq, nbl, ntim))
    spec = np.swapaxes(specamp, 2, 1)

    if domedian:
        if verbose:
            print('doing median of all the baselines')
        # mask zero values before median
        # spec_masked = np.ma.masked_where(spec < 1e-9, spec)
        # spec_masked2 = np.ma.masked_invalid(spec)
        # spec_masked = np.ma.masked_array(spec, mask=np.logical_or(spec_masked.mask, spec_masked2.mask))
        # spec_med = np.ma.filled(np.ma.median(spec_masked, axis=1), fill_value=0.)
        spec = np.abs(spec)
        spec_med = np.nanmedian(spec, axis=1)
        nbl = 1
        ospec = spec_med.reshape((npol, nbl, nfreq, ntim))
    else:
        ospec = spec
    # Save the dynamic spectral data
    if savespec:
        if not specfile:
            specfile = msfile + '.dspec.npz'
        if os.path.exists(specfile):
            os.system('rm -rf ' + specfile)
        np.savez(specfile, spec=ospec, tim=tim, freq=freq,
                 timeran=timeran, spw=spw, bl=bl, uvrange=uvrange, pol=pols)
        if verbose:
            print('Median dynamic spectrum saved as: ' + specfile)

    return {'spec': ospec, 'tim': tim, 'freq': freq, 'timeran': timeran, 'spw': spw, 'bl': bl, 'uvrange': uvrange,
            'pol': pols}
Ejemplo n.º 24
0
def compVarColTables(referencetab, testtab, varcol, tolerance=0.):
    '''Compare a variable column of two tables.
       referencetab  --> a reference table
       testtab       --> a table to verify
       varcol        --> the name of a variable column (str)
       Returns True or False.
    '''
    
    retval = True
    tb2 = casac.table()

    tb.open(referencetab)
    cnames = tb.colnames()

    tb2.open(testtab)
    col = varcol
    if tb.isvarcol(col) and tb2.isvarcol(col):
        try:
            # First check
            if tb.nrows() != tb2.nrows():
                print 'Length of %s differ from %s, %s!=%s'%(referencetab,testtab,len(rk),len(tk))
                retval = False
            else:
                for therow in xrange(tb.nrows()):
            
                    rdata = tb.getcell(col,therow)
                    tdata = tb2.getcell(col,therow)

#                    if not (rdata==tdata).all():
                    if not rdata.all()==tdata.all():
                        if (tolerance>0.):
                            differs=False
                            for j in range(0,len(rdata)):
###                                if (type(rdata[j])==float or type(rdata[j])==int):
                                if ((isinstance(rdata[j],float)) or (isinstance(rdata[j],int))):
                                    if (abs(rdata[j]-tdata[j]) > tolerance*abs(rdata[j]+tdata[j])):
#                                        print 'Column ', col,' differs in tables ', referencetab, ' and ', testtab
#                                        print therow, j
#                                        print rdata[j]
#                                        print tdata[j]
                                        differs = True
###                                elif (type(rdata[j])==list or type(rdata[j])==np.ndarray):
                                elif (isinstance(rdata[j],list)) or (isinstance(rdata[j],np.ndarray)):
                                    for k in range(0,len(rdata[j])):
                                        if (abs(rdata[j][k]-tdata[j][k]) > tolerance*abs(rdata[j][k]+tdata[j][k])):
#                                            print 'Column ', col,' differs in tables ', referencetab, ' and ', testtab
#                                            print therow, j, k
#                                            print rdata[j][k]
#                                            print tdata[j][k]
                                            differs = True
                                if differs:
                                    print 'ERROR: Column %s of %s and %s do not agree within tolerance %s'%(col,referencetab, testtab, tolerance)
                                    retval = False
                                    break
                        else:
                            print 'ERROR: Column %s of %s and %s do not agree.'%(col,referencetab, testtab)
                            print 'ERROR: First row to differ is row=%s'%therow
                            retval = False
                            break
        finally:
            tb.close()
            tb2.close()
    
    else:
        print 'Columns are not varcolumns.'
        retval = False

    if retval:
        print 'Column %s of %s and %s agree'%(col,referencetab, testtab)
        
    return retval
Ejemplo n.º 25
0
def svplot(vis, timerange=None, spw='', workdir='./', specfile=None, bl=None, uvrange=None,
           stokes='RR,LL', dmin=None, dmax=None,
           goestime=None, reftime=None, 
           xycen=None, fov=[500.,500.], xyrange=None, restoringbeam=[''], robust=0.0,
           niter=500, imsize=[512], cell=['5.0arcsec'],interactive=False, 
           usemsphacenter=True, imagefile=None, fitsfile=None, plotaia=True,
           aiawave=171, aiafits=None, savefig=False, mkmovie=False, overwrite=True, ncpu=10, twidth=1, verbose=True):
    '''
    Required inputs:
            vis: calibrated CASA measurement set
    Important optional inputs:
            timerange: timerange for clean. Standard CASA time selection format. 
                       If not provided, use the entire range (*BE CAREFUL, COULD BE VERY SLOW*)
            spw: spectral window selection following the CASA syntax. 
                 Examples: spw='1:2~60' (spw id 1, channel range 2-60); spw='*:1.2~1.3GHz' (selects all channels within 1.2-1.3 GHz; note the *) 
            specfile: supply dynamic spectrum save file (from suncasa.utils.dspec2.get_dspec()). Otherwise
                      generate a median dynamic spectrum on the fly
    Optional inputs:
            bl: baseline to generate dynamic spectrum
            uvrange: uvrange to select baselines for generating dynamic spectrum 
            stokes: polarization of the clean image, can be 'RR,LL' or 'I,V'
            dmin,dmax: color bar parameter
            goestime: goes plot time, example ['2016/02/18 18:00:00','2016/02/18 23:00:00']
            rhessisav: rhessi savefile
            reftime: reftime for the image
            xycen: center of the image in helioprojective coordinates (HPLN/HPLT), in arcseconds. Example: [900, -150.]
            fov: field of view in arcsecs. Example: [500., 500.]
            xyrange: field of view in solar XY coordinates. Format: [[x1,x2],[y1,y2]]. Example: [[900., 1200.],[0,300]] 
                     ***NOTE: THIS PARAMETER OVERWRITES XYCEN AND FOV***
            aiawave: wave length of aia file in a
            imagefile: if imagefile provided, use it. Otherwise do clean and generate a new one.
            fitsfile: if fitsfile provided, use it. Otherwise generate a new one
            savefig: whether to save the figure
    Example:

    '''

    if xycen:
        xc, yc = xycen
        xlen, ylen = fov
        if parse_version(sunpy.__version__)>parse_version('0.8.0'):
            xyrange = [[xc - xlen / 2.0, yc - ylen / 2.0], [xc + xlen / 2.0, yc + ylen / 2.0]]
        else:
            xyrange = [[xc - xlen / 2.0, xc + xlen / 2.0], [yc - ylen / 2.0, yc + ylen / 2.0]]
    stokes_allowed = ['RR,LL', 'I,V', 'RRLL', 'IV']
    if not stokes in stokes_allowed:
        print 'wrong stokes parameter ' + str(stokes) + '. Allowed values are ' + ', '.join(stokes_allowed)
        return -1
    if stokes == 'RRLL':
        stokes = 'RR,LL'
    if stokes == 'IV':
        stokes = 'I,V'

    if vis[-1] == '/':
        vis = vis[:-1]
    if not os.path.exists(vis):
        print 'input measurement not exist'
        return -1
    if aiafits is None:
        aiafits = ''
    # split the data
    # generating dynamic spectrum
    if not os.path.exists(workdir):
        os.makedirs(workdir)
    if specfile:
        try:
            specdata = np.load(specfile)
        except:
            print('Provided dynamic spectrum file not numpy npz. Generating one from the visibility data')
            specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz')
            dspec_external(vis, workdir=workdir, specfile=specfile)
            specdata = np.load(specfile)  # specdata = ds.get_dspec(vis, domedian=True, verbose=True)
    else:
        print('Dynamic spectrum file not provided; Generating one from the visibility data')
        # specdata = ds.get_dspec(vis, domedian=True, verbose=True)
        specfile = os.path.join(workdir, os.path.basename(vis) + '.dspec.npz')
        dspec_external(vis, workdir=workdir, specfile=specfile)
        specdata = np.load(specfile)

    tb.open(vis)
    starttim = Time(tb.getcell('TIME', 0) / 24. / 3600., format='mjd')
    endtim = Time(tb.getcell('TIME', tb.nrows() - 1) / 24. / 3600., format='mjd')
    tb.close()
    datstr = starttim.iso[:10]

    if timerange is None or timerange == '':
        starttim1 = starttim
        endtim1 = endtim
        timerange = '{0}~{1}'.format(starttim.iso.replace('-', '/').replace(' ', '/'), endtim.iso.replace('-', '/').replace(' ', '/'))
    else:
        try:
            (tstart, tend) = timerange.split('~')
            if tstart[2] == ':':
                starttim1 = Time(datstr + 'T' + tstart)
                endtim1 = Time(datstr + 'T' + tend)
                timerange = '{0}/{1}~{0}/{2}'.format(datstr.replace('-', '/'), tstart, tend)
            else:
                starttim1 = Time(qa.quantity(tstart, 'd')['value'], format='mjd')
                endtim1 = Time(qa.quantity(tend, 'd')['value'], format='mjd')
        except ValueError:
            print "keyword 'timerange' in wrong format"
    midtime_mjd = (starttim1.mjd + endtim1.mjd) / 2.

    if vis.endswith('/'):
        vis = vis[:-1]
    visname = os.path.basename(vis)
    bt = starttim1.plot_date
    et = endtim1.plot_date

    # find out min and max frequency for plotting in dynamic spectrum
    ms.open(vis)
    metadata = ms.metadata()
    observatory = metadata.observatorynames()[0]
    spwInfo = ms.getspectralwindowinfo()
    nspw = len(spwInfo)
    if not spw:
        spw = '0~' + str(nspw - 1)
    staql = {'timerange': timerange, 'spw': spw}
    if ms.msselect(staql, onlyparse=True):
        ndx = ms.msselectedindices()
        chan_sel = ndx['channel']
        nspw = chan_sel.shape[0]
        bspw = chan_sel[0, 0]
        bchan = chan_sel[0, 1]
        espw = chan_sel[-1, 0]
        echan = chan_sel[-1, 2]
        bfreq = spwInfo[str(bspw)]['Chan1Freq'] + spwInfo[str(bspw)]['ChanWidth'] * bchan
        efreq = spwInfo[str(espw)]['Chan1Freq'] + spwInfo[str(espw)]['ChanWidth'] * echan
        bfreqghz = bfreq / 1e9
        efreqghz = efreq / 1e9
        if verbose:
            print 'selected timerange {}'.format(timerange)
            print 'selected frequency range {0:6.3f} to {1:6.3f} GHz'.format(bfreqghz, efreqghz)
    else:
        print "spw or timerange selection failed. Aborting..."
        ms.close()
        return -1
    ms.close()

    if observatory == 'EOVSA':
        print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV'
        stokes = 'I,V'

    if mkmovie:
        plt.ioff()
        # fig = plt.figure(figsize=(12, 7.5), dpi=100)
        if fitsfile:
            pass
        else:
            if not imagefile:
                # from ptclean_cli import ptclean_cli as ptclean
                eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd'))
                if observatory == 'EOVSA' or (not usemsphacenter):
                    phasecenter = ''
                else:
                    phasecenter = 'J2000 ' + str(eph['ra'][0])[:15] + 'rad ' + str(eph['dec'][0])[:15] + 'rad'
                print 'use phasecenter: ' + phasecenter
                qlookfitsdir = os.path.join(workdir, 'qlookfits/')
                qlookfigdir = os.path.join(workdir, 'qlookimgs/')
                imresfile = os.path.join(qlookfitsdir, '{}.imres.npz'.format(os.path.basename(vis)))
                if overwrite:
                    imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes,
                                           c_external=True)
                else:
                    if os.path.exists(imresfile):
                        imres = np.load(imresfile)
                        imres = imres['imres'].item()
                    else:
                        print('Image results file not found; Creating new images.')
                        imres = mk_qlook_image(vis, twidth=twidth, ncpu=ncpu, imagedir=qlookfitsdir, phasecenter=phasecenter, stokes=stokes,
                                               c_external=True)
                if not os.path.exists(qlookfigdir):
                    os.makedirs(qlookfigdir)
                plt_qlook_image(imres, figdir=qlookfigdir, specdata=specdata, verbose=True, stokes=stokes, fov=xyrange)

    else:
        spec = specdata['spec']
        (npol, nbl, nfreq, ntim) = spec.shape
        tidx = range(ntim)
        fidx = range(nfreq)
        tim = specdata['tim']
        freq = specdata['freq']
        freqghz = freq / 1e9
        spec_tim = Time(specdata['tim'] / 3600. / 24., format='mjd')
        timstrr = spec_tim.plot_date
        plt.ion()
        fig = plt.figure(figsize=(12, 7), dpi=100)
        gs1 = gridspec.GridSpec(3, 1)
        gs1.update(left=0.08, right=0.32, wspace=0.05)
        gs2 = gridspec.GridSpec(2, 2)
        gs2.update(left=0.38, right=0.98, hspace=0.02, wspace=0.02)

        spec_1 = np.absolute(spec[0, 0, :, :])
        spec_2 = np.absolute(spec[1, 0, :, :])
        if observatory == 'EVLA':
            # circular feeds
            polstr = ['RR', 'LL']
        if observatory == 'EOVSA' or observatory == 'ALMA':
            # linear feeds
            polstr = ['XX', 'YY']

        print 'plot the dynamic spectrum in pol ' + ' & '.join(polstr)
        ax1 = plt.subplot(gs1[0])
        ax1.pcolormesh(timstrr, freqghz, spec_1, cmap='jet', vmin=dmin, vmax=dmax)
        ax1.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]])
        ax1.xaxis_date()
        ax1.xaxis.set_major_formatter(DateFormatter("%H:%M:%S"))
        # ax1.set_xticklabels(['']*10)
        ax1.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]])
        ax1.set_ylabel('Frequency (GHz)', fontsize=10)
        ax1.set_title(observatory + ' ' + datstr + ' ' + polstr[0] + ' & ' + polstr[1], fontsize=12)
        ax1.set_autoscale_on(False)
        ax1.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False))
        ax1.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12)
        for tick in ax1.get_xticklabels():
            tick.set_fontsize(8)
        for tick in ax1.get_yticklabels():
            tick.set_fontsize(8)
        ax2 = plt.subplot(gs1[1])
        ax2.pcolormesh(timstrr, freqghz, spec_2, cmap='jet', vmin=dmin, vmax=dmax)
        ax2.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]])
        ax2.xaxis_date()
        ax2.xaxis.set_major_formatter(DateFormatter("%H:%M:%S"))
        ax2.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]])
        ax2.set_ylabel('Frequency (GHz)', fontsize=10)
        for tick in ax2.get_xticklabels():
            tick.set_fontsize(8)
        for tick in ax2.get_yticklabels():
            tick.set_fontsize(8)
        ax2.set_autoscale_on(False)
        ax2.add_patch(patches.Rectangle((bt, bfreqghz), et - bt, efreqghz - bfreqghz, ec='w', fill=False))
        ax2.plot([(bt + et) / 2.], [(bfreqghz + efreqghz) / 2.], '*w', ms=12)

        # Second part: GOES plot
        if goestime:
            btgoes = goestime[0]
            etgoes = goestime[1]
        else:
            datstrg = datstr.replace('-', '/')
            btgoes = datstrg + ' ' + qa.time(qa.quantity(tim[0] - 1800, 's'), form='clean', prec=9)[0]
            etgoes = datstrg + ' ' + qa.time(qa.quantity(tim[tidx[-1] - 1] + 1800, 's'), form='clean', prec=9)[0]
        if verbose:
            print 'Acquire GOES soft X-ray data in from ' + btgoes + ' to ' + etgoes

        ax3 = plt.subplot(gs1[2])

        try:
            from sunpy import lightcurve as lc
            from sunpy.time import TimeRange
            goest = lc.GOESLightCurve.create(TimeRange(btgoes, etgoes))
        except:
            goesscript = os.path.join(workdir, 'goes.py')
            goesdatafile = os.path.join(workdir, 'goes.dat')
            os.system('rm -rf {}'.format(goesscript))
            fi = open(goesscript, 'wb')
            fi.write('import os \n')
            fi.write('from sunpy.time import TimeRange \n')
            fi.write('from sunpy import lightcurve as lc \n')
            fi.write('import pickle \n')
            fi.write('goesplottim = TimeRange("{0}", "{1}") \n'.format(btgoes, etgoes))
            fi.write('goes = lc.GOESLightCurve.create(goesplottim) \n')
            fi.write('fi2 = open("{}", "wb") \n'.format(goesdatafile))
            fi.write('pickle.dump(goes, fi2) \n')
            fi.write('fi2.close()')
            fi.close()

            try:
                os.system('python {}'.format(goesscript))
                os.system('rm -rf {}'.format(goesscript))
            except NameError:
                print "Bad input names"
            except ValueError:
                print "Bad input values"
            except:
                print "Unexpected error:", sys.exc_info()[0]
                print "Error in generating GOES light curves. Proceed without GOES..."

            if os.path.exists(goesdatafile):
                fi1 = file(goesdatafile, 'rb')
                goest = pickle.load(fi1)
                fi1.close()

        try:
            dates = mpl.dates.date2num(parse_time(goest.data.index))
            goesdif = np.diff(goest.data['xrsb'])
            gmax = np.nanmax(goesdif)
            gmin = np.nanmin(goesdif)
            ran = gmax - gmin
            db = 2.8 / ran
            goesdifp = goesdif * db + gmin + (-6)
            ax3.plot_date(dates, np.log10(goest.data['xrsb']), '-', label='1.0--8.0 $\AA$', color='red', lw=2)
            ax3.plot_date(dates[0:-1], goesdifp, '-', label='derivate', color='blue', lw=0.4)

            ax3.set_ylim([-7, -3])
            ax3.set_yticks([-7, -6, -5, -4, -3])
            ax3.set_yticklabels([r'$10^{-7}$', r'$10^{-6}$', r'$10^{-5}$', r'$10^{-4}$', r'$10^{-3}$'])
            ax3.set_title('Goes Soft X-ray', fontsize=12)
            ax3.set_ylabel('Watts m$^{-2}$')
            ax3.set_xlabel(datetime.datetime.isoformat(goest.data.index[0])[0:10])
            ax3.axvspan(dates[899], dates[dates.size - 899], alpha=0.2)

            ax2 = ax3.twinx()
            # ax2.set_yscale("log")
            ax2.set_ylim([-7, -3])
            ax2.set_yticks([-7, -6, -5, -4, -3])
            ax2.set_yticklabels(['B', 'C', 'M', 'X', ''])

            ax3.yaxis.grid(True, 'major')
            ax3.xaxis.grid(False, 'major')
            ax3.legend(prop={'size': 6})

            formatter = mpl.dates.DateFormatter('%H:%M')
            ax3.xaxis.set_major_formatter(formatter)

            ax3.fmt_xdata = mpl.dates.DateFormatter('%H:%M')
        except:
            print 'Error in downloading GOES soft X-ray data. Proceeding with out soft X-ray plot.'

        # third part
        # start to download the fits files
        if plotaia:
            if not aiafits:
                newlist = []
                items = glob.glob('*.fits')
                for names in items:
                    str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[
                                                                                                            11:13] + '_' + starttim1.iso[14:16]
                    str2 = str(aiawave)
                    if names.endswith(".fits"):
                        if names.find(str1) != -1 and names.find(str2) != -1:
                            newlist.append(names)
                    newlist.append('0')
                if newlist and os.path.exists(newlist[0]):
                    aiafits = newlist[0]
                else:
                    print 'downloading the aiafits file'
                    wave1 = aiawave - 3
                    wave2 = aiawave + 3
                    t1 = Time(starttim1.mjd - 0.02 / 24., format='mjd')
                    t2 = Time(endtim1.mjd + 0.02 / 24., format='mjd')
                    try:
                        from sunpy.net import vso
                        client = vso.VSOClient()
                        qr = client.query(vso.attrs.Time(t1.iso, t2.iso), vso.attrs.Instrument('aia'), vso.attrs.Wave(wave1 * u.AA, wave2 * u.AA))
                        res = client.get(qr, path='{file}')
                    except:
                        SdoDownloadscript = os.path.join(workdir, 'SdoDownload.py')
                        os.system('rm -rf {}'.format(SdoDownloadscript))
                        fi = open(SdoDownloadscript, 'wb')
                        fi.write('from sunpy.net import vso \n')
                        fi.write('from astropy import units as u \n')
                        fi.write('client = vso.VSOClient() \n')
                        fi.write(
                            "qr = client.query(vso.attrs.Time('{0}', '{1}'), vso.attrs.Instrument('aia'), vso.attrs.Wave({2} * u.AA, {3} * u.AA)) \n".format(
                                t1.iso, t2.iso, wave1, wave2))
                        fi.write("res = client.get(qr, path='{file}') \n")
                        fi.close()

                        try:
                            os.system('python {}'.format(SdoDownloadscript))
                        except NameError:
                            print "Bad input names"
                        except ValueError:
                            print "Bad input values"
                        except:
                            print "Unexpected error:", sys.exc_info()[0]
                            print "Error in Downloading AIA fits files. Proceed without AIA..."

            # Here something is needed to check whether it has finished downloading the fits files or not

            if not aiafits:
                newlist = []
                items = glob.glob('*.fits')
                for nm in items:
                    str1 = starttim1.iso[:4] + '_' + starttim1.iso[5:7] + '_' + starttim1.iso[8:10] + 't' + starttim1.iso[
                                                                                                            11:13] + '_' + starttim1.iso[14:16]
                    str2 = str(aiawave)
                    if nm.find(str1) != -1 and nm.find(str2) != -1:
                        newlist.append(nm)
                if newlist:
                    aiafits = newlist[0]
                    print 'AIA fits ' + aiafits + ' selected'
                else:
                    print 'no AIA fits files found. Proceed without AIA'

            try:
                aiamap = smap.Map(aiafits)
            except:
                print 'error in reading aiafits. Proceed without AIA'

        # RCP or I
        ax4 = plt.subplot(gs2[0, 0])
        ax5 = plt.subplot(gs2[1, 0])
        # LCP or V
        ax6 = plt.subplot(gs2[0, 1])
        ax7 = plt.subplot(gs2[1, 1])

        if fitsfile:
            pass
        else:
            if not imagefile:
                eph = hf.read_horizons(t0=Time(midtime_mjd, format='mjd'))
                if observatory == 'EOVSA' or (not usemsphacenter):
                    print 'This is EOVSA data'
                    # use RA and DEC from FIELD ID 0
                    tb.open(vis+'/FIELD')
                    phadir = tb.getcol('PHASE_DIR').flatten()
                    tb.close()
                    ra0 = phadir[0]
                    dec0 = phadir[1]
                    if stokes == 'RRLL' or stokes == 'RR,LL':
                        print 'Provide stokes: ' + str(stokes) + '. However EOVSA has linear feeds. Force stokes to be IV'
                        stokes = 'I,V'
                else:
                    ra0 = eph['ra'][0]
                    dec0 = eph['dec'][0]

                if not xycen:
                    # use solar disk center as default
                    phasecenter = 'J2000 ' + str(ra0) + 'rad ' + str(dec0) + 'rad'
                else:
                    x0 = np.radians(xycen[0]/3600.)
                    y0 = np.radians(xycen[1]/3600.)
                    p0 = np.radians(eph['p0'][0]) # p angle in radians 
                    raoff = -((x0) * np.cos(p0) - y0 * np.sin(p0))/np.cos(eph['dec'][0])
                    decoff = (x0) * np.sin(p0) + y0 * np.cos(p0)
                    newra = ra0 + raoff
                    newdec = dec0 + decoff
                    phasecenter = 'J2000 ' + str(newra) + 'rad ' + str(newdec) + 'rad'

                imagename = os.path.join(workdir, visname + '.outim')
                if os.path.exists(imagename + '.image') or os.path.exists(imagename + '.flux'):
                    os.system('rm -rf ' + imagename + '.*')
                sto = stokes.replace(',', '')
                print 'do clean for ' + timerange + ' in spw ' + spw + ' stokes ' + sto
                print 'Original phasecenter: '+ str(ra0) + str(dec0)
                print 'use phasecenter: ' + phasecenter
                clean(vis=vis, imagename=imagename, selectdata=True, spw=spw, timerange=timerange, stokes=sto,
                      niter=niter, interactive=interactive, npercycle=50, imsize=imsize, cell=cell, restoringbeam=restoringbeam,
                      weighting='briggs', robust=robust, phasecenter=phasecenter)
                os.system('rm -rf ' + imagename + '.psf')
                os.system('rm -rf ' + imagename + '.flux')
                os.system('rm -rf ' + imagename + '.model')
                os.system('rm -rf ' + imagename + '.mask')
                os.system('rm -rf ' + imagename + '.residual')
                imagefile = imagename + '.image'
            fitsfile = imagefile + '.fits'
            hf.imreg(vis=vis, ephem=eph, imagefile=imagefile, timerange=timerange, reftime=reftime, fitsfile=fitsfile, verbose=True, overwrite=True)
        print 'fits file ' + fitsfile + ' selected'
        ax4.cla()
        ax5.cla()
        ax6.cla()
        ax7.cla()

        rfits = fitsfile
        try:
            hdulist = fits.open(rfits)
            hdu = hdulist[0]
            (npol, nf, nx, ny) = hdu.data.shape
            rmap = smap.Map(hdu.data[0, 0, :, :], hdu.header)
        except:
            print 'radio fits file not recognized by sunpy.map. Aborting...'
            return -1
        if npol > 1:
            rmap1 = smap.Map(hdu.data[0, 0, :, :], hdu.header)
            rmap2 = smap.Map(hdu.data[1, 0, :, :], hdu.header)

        XX, YY = np.meshgrid(np.arange(rmap.data.shape[1]), np.arange(rmap.data.shape[0]))
        try:
            rmapx, rmapy = rmap.pixel_to_data(XX * u.pix, YY * u.pix)
        except:
            rmapxy = rmap.pixel_to_data(XX * u.pix, YY * u.pix)
            rmapx = rmapxy.Tx
            rmapy = rmapxy.Ty

        if not xyrange:
            if xycen:
                x0 = xycen[0] * u.arcsec
                y0 = xycen[1] * u.arcsec
            if not xycen:
                row, col = rmap1.data.shape
                positon = np.nanargmax(rmap1.data)
                m, n = divmod(positon, col)
                x0 = rmap1.xrange[0] + rmap1.scale[1] * (n + 0.5) * u.pix
                y0 = rmap1.yrange[0] + rmap1.scale[0] * (m + 0.5) * u.pix
            if len(fov) == 1:
                fov=[fov]*2
            sz_x = fov[0] * u.arcsec
            sz_y = fov[1] * u.arcsec
            x1 = x0 - sz_x/2.
            x2 = x0 + sz_x/2.
            y1 = y0 - sz_y/2.
            y2 = y0 + sz_y/2.
            xyrange = [[x1.value, x2.value], [y1.value, y2.value]]
        else:
            sz_x = xyrange[0][1] - xyrange[0][0]
            sz_y = xyrange[1][1] - xyrange[1][0]


        clevels1 = np.linspace(0.2, 0.9, 5)
        if stokes.split(',')[1] == 'V':
            clevels2 = np.array([0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8])
        else:
            clevels2 = np.linspace(0.2, 0.9, 5)
        if 'aiamap' in vars():
            aiamap.plot_settings['cmap'] = plt.get_cmap('binary')
            if rmap:
                title = 'AIA {0:.0f} + {1} {2:6.3f} GHz'.format(aiamap.wavelength.value, observatory, (bfreqghz + efreqghz) / 2.0)
            else:
                title = 'AIA {0:.0f}'.format(aiamap.wavelength.value)
            aiamap.plot(axes=ax4)
            ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12)
            aiamap.draw_limb()
            aiamap.draw_grid()
            aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            aiamap.plot(axes=ax6)
            ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12)
            aiamap.draw_limb()
            aiamap.draw_grid()
            aiamap.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            if rmap:
                ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=clevels1 * np.nanmax(rmap1.data), cmap=cm.jet)
                ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=clevels2 * np.nanmax(rmap2.data), cmap=cm.RdBu)
            ax4.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'),
                     verticalalignment='bottom', horizontalalignment='left', transform=ax4.transAxes, color='k',
                     fontsize=10)
            ax6.text(0.02, 0.02, 'AIA {0:.0f} '.format(aiamap.wavelength.value) + aiamap.date.strftime('%H:%M:%S'),
                     verticalalignment='bottom', horizontalalignment='left', transform=ax6.transAxes, color='k',
                     fontsize=10)
        else:
            title = '{0} {1:6.3f} GHz'.format(observatory, (bfreqghz + efreqghz) / 2.0)
            rmap1.plot(axes=ax4, cmap=cm.jet)
            ax4.set_title(title + ' ' + stokes.split(',')[0], fontsize=12)
            rmap1.draw_limb()
            rmap1.draw_grid()
            rmap1.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)
            rmap2.plot(axes=ax6, cmap=cm.RdBu)
            ax6.set_title(title + ' ' + stokes.split(',')[1], fontsize=12)
            rmap2.draw_limb()
            rmap2.draw_grid()
            # ax4.contour(rmapx.value, rmapy.value, rmap1.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap1.data),
            #            cmap=cm.gray)
            # ax6.contour(rmapx.value, rmapy.value, rmap2.data, levels=np.linspace(0.2, 0.9, 5) * np.nanmax(rmap2.data),
            #            cmap=cm.gray)
            rmap2.draw_rectangle((xyrange[0][0], xyrange[1][0]) * u.arcsec, sz_x, sz_y)  
        ax4.set_xlim(-1200, 1200)
        ax4.set_ylim(-1200, 1200)
        ax6.set_xlim(-1200, 1200)
        ax6.set_ylim(-1200, 1200)

        try:
            subrmap1 = rmap1.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
            subrmap2 = rmap2.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
        except:
            bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=rmap1.coordinate_frame)
            tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=rmap1.coordinate_frame)
            subrmap1 = rmap1.submap(bl, tr)
            subrmap2 = rmap2.submap(bl, tr)

        XX, YY = np.meshgrid(np.arange(subrmap1.data.shape[1]), np.arange(subrmap1.data.shape[0]))
        try:
            subrmapx, subrmapy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix)
        except:
            subrmapxy = subrmap1.pixel_to_data(XX * u.pix, YY * u.pix)
            subrmapx = subrmapxy.Tx
            subrmapy = subrmapxy.Ty

        if 'aiamap' in vars():
            try:
                subaiamap = aiamap.submap(xyrange[0] * u.arcsec, xyrange[1] * u.arcsec)
            except:
                bl = SkyCoord(xyrange[0][0] * u.arcsec, xyrange[1][0] * u.arcsec, frame=aiamap.coordinate_frame)
                tr = SkyCoord(xyrange[0][1] * u.arcsec, xyrange[1][1] * u.arcsec, frame=aiamap.coordinate_frame)
                subaiamap = aiamap.submap(bl, tr)

            subaiamap.plot(axes=ax5, title='')
            subaiamap.draw_limb()
            subaiamap.draw_grid()
            subaiamap.plot(axes=ax7, title='')
            subaiamap.draw_limb()
            subaiamap.draw_grid()
            ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data, levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.jet)
            ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data, levels=clevels2 * np.nanmax(subrmap2.data),
                        cmap=cm.RdBu)  # subaiamap.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)
        else:
            subrmap1.plot(axes=ax5, cmap=cm.jet, title='')
            subrmap1.draw_limb()
            subrmap1.draw_grid()
            subrmap2.plot(axes=ax7, cmap=cm.RdBu, title='')
            subrmap2.draw_limb()
            subrmap2.draw_grid()  # ax5.contour(subrmapx.value, subrmapy.value, subrmap1.data,  #            levels=clevels1 * np.nanmax(subrmap1.data), cmap=cm.gray)  # ax7.contour(subrmapx.value, subrmapy.value, subrmap2.data,  #            levels=clevels2 * np.nanmax(subrmap2.data), cmap=cm.gray)  # subrmap1.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)  # subrmap2.draw_rectangle((fov[0][0], fov[1][0]) * u.arcsec, 400 * u.arcsec, 400 * u.arcsec)
        ax5.set_xlim(xyrange[0])
        ax5.set_ylim(xyrange[1])
        ax5.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom',
                 horizontalalignment='left', transform=ax5.transAxes, color='k', fontsize=10)
        ax7.set_xlim(xyrange[0])
        ax7.set_ylim(xyrange[1])
        ax7.text(0.02, 0.02, observatory + ' ' + rmap.date.strftime('%H:%M:%S.%f')[:-3], verticalalignment='bottom',
                 horizontalalignment='left', transform=ax7.transAxes, color='k', fontsize=10)

        fig.show()
Ejemplo n.º 26
0
def make_ephem(vis, ephemfile=None):
    '''
    make ephemeris table from JPLhorizon:

    Cautioned that the tab created in CASA 5+ lacks many columns such as Rho, RadVel, etc., which are essential for fixplanets
    The issue comes from a update on jplreader after 2015. some keys are not write to the ephemeris table.
    This only works with CASA 4+
    :param vis:
    :param ephemfile:
    :return:
    '''
    import urllib2, ssl
    from taskinit import tb
    quantities = ['1', '14', '15', '17', '19', '20', '24', '32']
    quantities = ','.join(quantities)
    tb.open(vis + '/OBSERVATION')
    trs = {'BegTime': [], 'EndTime': []}
    for ll in range(tb.nrows()):
        tim0, tim1 = Time(tb.getcell('TIME_RANGE', ll) / 24 / 3600,
                          format='mjd')
        trs['BegTime'].append(tim0)
        trs['EndTime'].append(tim1)
    tb.close()
    trs['BegTime'] = Time(trs['BegTime'])
    trs['EndTime'] = Time(trs['EndTime'])
    btime = np.min(trs['BegTime'])
    etime = np.max(trs['EndTime'])
    print("Beginning time of this scan " + btime.iso)
    print("End time of this scan " + etime.iso)

    btime = Time((btime.mjd - 1.0 / 60 / 24), format='mjd')
    etime = Time((etime.mjd + 1.0 / 60 / 24), format='mjd')
    startdate = btime.iso.replace(' ', ',')[:-7]
    enddate = etime.iso.replace(' ', ',')[:-7]
    cmd = [
        "COMMAND= '10'", "CENTER= '-5@399'", "MAKE_EPHEM= 'YES'",
        "TABLE_TYPE= 'OBSERVER'",
        "START_TIME= '%s'" % startdate,
        "STOP_TIME= '%s'" % enddate, "STEP_SIZE= '1m'", "CAL_FORMAT= 'CAL'",
        "TIME_DIGITS= 'MINUTES'", "ANG_FORMAT= 'DEG'", "OUT_UNITS= 'KM-S'",
        "RANGE_UNITS= 'AU'", "APPARENT= 'AIRLESS'", "SOLAR_ELONG= '0,180'",
        "SUPPRESS_RANGE_RATE= 'NO'", "SKIP_DAYLT= 'NO'", "EXTRA_PREC= 'NO'",
        "R_T_S_ONLY= 'NO'", "REF_SYSTEM= 'J2000'", "CSV_FORMAT= 'YES'",
        "OBJ_DATA= 'YES'", "TIME_DIGITS ='MIN'",
        "QUANTITIES= '{}'".format(quantities)
    ]
    cmdstr = "http://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=l&" + '&'.join(
        cmd)
    try:
        context = ssl._create_unverified_context()
        f = urllib2.urlopen(cmdstr, context=context)
    except:
        f = urllib2.urlopen(cmdstr)
    lines = f.readlines()
    f.close()
    istart = 0
    for i, l in enumerate(lines):
        if l[0:5] == '$$SOE':  # start recording
            istart = i + 1
        if l[0:5] == '$$EOE':  # end recording
            iend = i

    if not ephemfile:
        ephemfile = 'sun-ephem-geo.txt'
    with open(ephemfile, 'w') as fb:
        for i, l in enumerate(lines):
            if i == istart - 3:
                fb.write(
                    ' Date__(UT)__HR:MN     R.A.___(J2000.0)___DEC. Ob-lon Ob-lat Sl-lon Sl-lat   NP.ang   NP.dist               r        rdot            delta      deldot    S-T-O'
                )
            if i >= istart and i < iend:
                l_s = l.split(',')
                l_s.pop(1)
                l_s.pop(1)
                fb.write(' '.join(l_s))
            else:
                fb.write(l)
                # with open(ephemfile,'w') as fb:
                #     for i,l in enumerate(lines):
                #         fb.write(l.replace('*m','').replace('*t',''))
    return ephemfile