Ejemplo n.º 1
0
class PPO(Policy):
    
    def __init__(self, cfg, is_train=False):
        self.is_train = is_train
        
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f:
            cfg = json.load(f)
        
        # construct policy and value network
        self.policy = MultiDiscretePolicy(self.vector.state_dim, cfg['h_dim'], self.vector.da_dim).to(device=DEVICE)
        self.value = Value(self.vector.state_dim, cfg['hv_dim']).to(device=DEVICE)
        
    def predict(self, state):
        """
        Predict an system action given state.
        Args:
            state (dict): Dialog state. Please refer to util/state.py
        Returns:
            action : System act, with the form of (act_type, {slot_name_1: value_1, slot_name_2, value_2, ...})
        """
        s_vec = torch.Tensor(self.vector.state_vectorize(state))
        a = self.policy.select_action(s_vec.to(device=DEVICE)).cpu()
        action = self.vector.action_devectorize(a.numpy())
        
        return action

    def init_session(self):
        """
        Restore after one session
        """
        pass
    
    def est_adv(self, r, v, mask):
        """
        we save a trajectory in continuous space and it reaches the ending of current trajectory when mask=0.
        :param r: reward, Tensor, [b]
        :param v: estimated value, Tensor, [b]
        :param mask: indicates ending for 0 otherwise 1, Tensor, [b]
        :return: A(s, a), V-target(s), both Tensor
        """
        batchsz = v.size(0)

        # v_target is worked out by Bellman equation.
        v_target = torch.Tensor(batchsz).to(device=DEVICE)
        delta = torch.Tensor(batchsz).to(device=DEVICE)
        A_sa = torch.Tensor(batchsz).to(device=DEVICE)

        prev_v_target = 0
        prev_v = 0
        prev_A_sa = 0
        for t in reversed(range(batchsz)):
            # mask here indicates a end of trajectory
            # this value will be treated as the target value of value network.
            # mask = 0 means the immediate reward is the real V(s) since it's end of trajectory.
            # formula: V(s_t) = r_t + gamma * V(s_t+1)
            v_target[t] = r[t] + self.gamma * prev_v_target * mask[t]

            # please refer to : https://arxiv.org/abs/1506.02438
            # for generalized adavantage estimation
            # formula: delta(s_t) = r_t + gamma * V(s_t+1) - V(s_t)
            delta[t] = r[t] + self.gamma * prev_v * mask[t] - v[t]

            # formula: A(s, a) = delta(s_t) + gamma * lamda * A(s_t+1, a_t+1)
            # here use symbol tau as lambda, but original paper uses symbol lambda.
            A_sa[t] = delta[t] + self.gamma * self.tau * prev_A_sa * mask[t]

            # update previous
            prev_v_target = v_target[t]
            prev_v = v[t]
            prev_A_sa = A_sa[t]

        # normalize A_sa
        A_sa = (A_sa - A_sa.mean()) / A_sa.std()

        return A_sa, v_target
    
    def update(self, epoch, batchsz, s, a, r, mask):
        # get estimated V(s) and PI_old(s, a)
        # actually, PI_old(s, a) can be saved when interacting with env, so as to save the time of one forward elapsed
        # v: [b, 1] => [b]
        v = self.value(s).squeeze(-1).detach()
        log_pi_old_sa = self.policy.get_log_prob(s, a).detach()
        
        # estimate advantage and v_target according to GAE and Bellman Equation
        A_sa, v_target = self.est_adv(r, v, mask)
        
        for i in range(self.update_round):

            # 1. shuffle current batch
            perm = torch.randperm(batchsz)
            # shuffle the variable for mutliple optimize
            v_target_shuf, A_sa_shuf, s_shuf, a_shuf, log_pi_old_sa_shuf = v_target[perm], A_sa[perm], s[perm], a[perm], \
                                                                           log_pi_old_sa[perm]

            # 2. get mini-batch for optimizing
            optim_chunk_num = int(np.ceil(batchsz / self.optim_batchsz))
            # chunk the optim_batch for total batch
            v_target_shuf, A_sa_shuf, s_shuf, a_shuf, log_pi_old_sa_shuf = torch.chunk(v_target_shuf, optim_chunk_num), \
                                                                           torch.chunk(A_sa_shuf, optim_chunk_num), \
                                                                           torch.chunk(s_shuf, optim_chunk_num), \
                                                                           torch.chunk(a_shuf, optim_chunk_num), \
                                                                           torch.chunk(log_pi_old_sa_shuf,
                                                                                       optim_chunk_num)
            # 3. iterate all mini-batch to optimize
            policy_loss, value_loss = 0., 0.
            for v_target_b, A_sa_b, s_b, a_b, log_pi_old_sa_b in zip(v_target_shuf, A_sa_shuf, s_shuf, a_shuf,
                                                                     log_pi_old_sa_shuf):
                # print('optim:', batchsz, v_target_b.size(), A_sa_b.size(), s_b.size(), a_b.size(), log_pi_old_sa_b.size())
                # 1. update value network
                self.value_optim.zero_grad()
                v_b = self.value(s_b).squeeze(-1)
                loss = (v_b - v_target_b).pow(2).mean()
                value_loss += loss.item()
                
                # backprop
                loss.backward()
                # nn.utils.clip_grad_norm(self.value.parameters(), 4)
                self.value_optim.step()

                # 2. update policy network by clipping
                self.policy_optim.zero_grad()
                # [b, 1]
                log_pi_sa = self.policy.get_log_prob(s_b, a_b)
                # ratio = exp(log_Pi(a|s) - log_Pi_old(a|s)) = Pi(a|s) / Pi_old(a|s)
                # we use log_pi for stability of numerical operation
                # [b, 1] => [b]
                ratio = (log_pi_sa - log_pi_old_sa_b).exp().squeeze(-1)
                surrogate1 = ratio * A_sa_b
                surrogate2 = torch.clamp(ratio, 1 - self.epsilon, 1 + self.epsilon) * A_sa_b
                # this is element-wise comparing.
                # we add negative symbol to convert gradient ascent to gradient descent
                surrogate = - torch.min(surrogate1, surrogate2).mean()
                policy_loss += surrogate.item()

                # backprop
                surrogate.backward()
                # gradient clipping, for stability
                torch.nn.utils.clip_grad_norm(self.policy.parameters(), 10)
                # self.lock.acquire() # retain lock to update weights
                self.policy_optim.step()
                # self.lock.release() # release lock
            
            value_loss /= optim_chunk_num
            policy_loss /= optim_chunk_num
            logging.debug('<<dialog policy ppo>> epoch {}, iteration {}, value, loss {}'.format(epoch, i, value_loss))
            logging.debug('<<dialog policy ppo>> epoch {}, iteration {}, policy, loss {}'.format(epoch, i, policy_loss))
        
        if (epoch+1) % self.save_per_epoch == 0:
            self.save(self.save_dir, epoch)
Ejemplo n.º 2
0
class PG(Policy):

    def __init__(self, is_train=False, dataset='Multiwoz'):
        with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json'), 'r') as f:
            cfg = json.load(f)
        self.save_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), cfg['save_dir'])
        self.save_per_epoch = cfg['save_per_epoch']
        self.update_round = cfg['update_round']
        self.optim_batchsz = cfg['batchsz']
        self.gamma = cfg['gamma']
        self.is_train = is_train
        if is_train:
            init_logging_handler(cfg['log_dir'])

        if dataset == 'Multiwoz':
            voc_file = os.path.join(root_dir, 'data/multiwoz/sys_da_voc.txt')
            voc_opp_file = os.path.join(root_dir, 'data/multiwoz/usr_da_voc.txt')
            self.vector = MultiWozVector(voc_file, voc_opp_file)
            self.policy = MultiDiscretePolicy(self.vector.state_dim, cfg['h_dim'], self.vector.da_dim).to(device=DEVICE)

        # self.policy = MultiDiscretePolicy(self.vector.state_dim, cfg['h_dim'], self.vector.da_dim).to(device=DEVICE)
        if is_train:
            self.policy_optim = optim.RMSprop(self.policy.parameters(), lr=cfg['lr'])

    def predict(self, state):
        """
        Predict an system action given state.
        Args:
            state (dict): Dialog state. Please refer to util/state.py
        Returns:
            action : System act, with the form of (act_type, {slot_name_1: value_1, slot_name_2, value_2, ...})
        """
        s_vec = torch.Tensor(self.vector.state_vectorize(state))
        a = self.policy.select_action(s_vec.to(device=DEVICE), self.is_train).cpu()
        action = self.vector.action_devectorize(a.numpy())

        return action

    def init_session(self):
        """
        Restore after one session
        """
        pass

    def est_return(self, r, mask):
        """
        we save a trajectory in continuous space and it reaches the ending of current trajectory when mask=0.
        :param r: reward, Tensor, [b]
        :param mask: indicates ending for 0 otherwise 1, Tensor, [b]
        :return: V-target(s), Tensor
        """
        batchsz = r.size(0)

        # v_target is worked out by Bellman equation.
        v_target = torch.Tensor(batchsz).to(device=DEVICE)

        prev_v_target = 0
        for t in reversed(range(batchsz)):
            # mask here indicates a end of trajectory
            # this value will be treated as the target value of value network.
            # mask = 0 means the immediate reward is the real V(s) since it's end of trajectory.
            # formula: V(s_t) = r_t + gamma * V(s_t+1)
            v_target[t] = r[t] + self.gamma * prev_v_target * mask[t]

            # update previous
            prev_v_target = v_target[t]

        return v_target

    def update(self, epoch, batchsz, s, a, r, mask):

        v_target = self.est_return(r, mask)

        for i in range(self.update_round):

            # 1. shuffle current batch
            perm = torch.randperm(batchsz)
            # shuffle the variable for mutliple optimize
            v_target_shuf, s_shuf, a_shuf = v_target[perm], s[perm], a[perm]

            # 2. get mini-batch for optimizing
            optim_chunk_num = int(np.ceil(batchsz / self.optim_batchsz))
            # chunk the optim_batch for total batch
            v_target_shuf, s_shuf, a_shuf = torch.chunk(v_target_shuf, optim_chunk_num), \
                                            torch.chunk(s_shuf, optim_chunk_num), \
                                            torch.chunk(a_shuf, optim_chunk_num)

            # 3. iterate all mini-batch to optimize
            policy_loss = 0.
            for v_target_b, s_b, a_b in zip(v_target_shuf, s_shuf, a_shuf):
                # print('optim:', batchsz, v_target_b.size(), A_sa_b.size(), s_b.size(), a_b.size(), log_pi_old_sa_b.size())

                # update policy network by clipping
                self.policy_optim.zero_grad()
                # [b, 1]
                log_pi_sa = self.policy.get_log_prob(s_b, a_b)
                # ratio = exp(log_Pi(a|s) - log_Pi_old(a|s)) = Pi(a|s) / Pi_old(a|s)
                # we use log_pi for stability of numerical operation
                # [b, 1] => [b]
                # this is element-wise comparing.
                # we add negative symbol to convert gradient ascent to gradient descent
                surrogate = - (log_pi_sa * v_target_b).mean()
                policy_loss += surrogate.item()

                # backprop
                surrogate.backward()
                # gradient clipping, for stability
                torch.nn.utils.clip_grad_norm(self.policy.parameters(), 10)
                # self.lock.acquire() # retain lock to update weights
                self.policy_optim.step()
                # self.lock.release() # release lock

            policy_loss /= optim_chunk_num
            logging.debug('<<dialog policy pg>> epoch {}, iteration {}, policy, loss {}'.format(epoch, i, policy_loss))

        if (epoch + 1) % self.save_per_epoch == 0:
            self.save(self.save_dir, epoch)

    def save(self, directory, epoch):
        if not os.path.exists(directory):
            os.makedirs(directory)

        torch.save(self.policy.state_dict(), directory + '/' + str(epoch) + '_pg.pol.mdl')

        logging.info('<<dialog policy>> epoch {}: saved network to mdl'.format(epoch))

    def load(self, filename):
        policy_mdl = os.path.join(os.path.dirname(os.path.abspath(__file__)), filename + '_pg.pol.mdl')
        if os.path.exists(policy_mdl):
            self.policy.load_state_dict(torch.load(policy_mdl))
            print('<<dialog policy>> loaded checkpoint from file: {}'.format(policy_mdl))
Ejemplo n.º 3
0
class PG(Policy):
    
    def __init__(self, cfg, is_train=False):
        self.is_train = is_train
        self.policy = MultiDiscretePolicy(cfg).to(device=DEVICE)
        
    def predict(self, state, sess=None):
        """
        Predict an system action given state.
        Args:
            state (dict): Dialog state. Please refer to util/state.py
        Returns:
            action : System act, with the form of (act_type, {slot_name_1: value_1, slot_name_2, value_2, ...})
        """
        s_vec = torch.Tensor(self.vector.state_vectorize(state))
        a = self.policy.select_action(s_vec.to(device=DEVICE)).cpu()
        action = self.vector.action_devectorize(a.numpy())
        
        return action

    def init_session(self):
        """
        Restore after one session
        """
        pass
    
    def est_return(self, r, mask):
        """
        we save a trajectory in continuous space and it reaches the ending of current trajectory when mask=0.
        :param r: reward, Tensor, [b]
        :param mask: indicates ending for 0 otherwise 1, Tensor, [b]
        :return: V-target(s), Tensor
        """
        batchsz = r.size(0)
        
        # v_target is worked out by Bellman equation.
        v_target = torch.Tensor(batchsz).to(device=DEVICE)
        
        prev_v_target = 0
        for t in reversed(range(batchsz)):
            # mask here indicates a end of trajectory
            # this value will be treated as the target value of value network.
            # mask = 0 means the immediate reward is the real V(s) since it's end of trajectory.
            # formula: V(s_t) = r_t + gamma * V(s_t+1)
            v_target[t] = r[t] + self.gamma * prev_v_target * mask[t]
            
            # update previous
            prev_v_target = v_target[t]
            
        return v_target
    
    def update(self, epoch, batchsz, s, a, r, mask):
        
        v_target = self.est_return(r, mask)
        
        for i in range(self.update_round):

            # 1. shuffle current batch
            perm = torch.randperm(batchsz)
            # shuffle the variable for mutliple optimize
            v_target_shuf, s_shuf, a_shuf = v_target[perm], s[perm], a[perm]

            # 2. get mini-batch for optimizing
            optim_chunk_num = int(np.ceil(batchsz / self.optim_batchsz))
            # chunk the optim_batch for total batch
            v_target_shuf, s_shuf, a_shuf = torch.chunk(v_target_shuf, optim_chunk_num), \
                                                       torch.chunk(s_shuf, optim_chunk_num), \
                                                       torch.chunk(a_shuf, optim_chunk_num)

            # 3. iterate all mini-batch to optimize
            policy_loss = 0.
            for v_target_b, s_b, a_b in zip(v_target_shuf, s_shuf, a_shuf):
                # print('optim:', batchsz, v_target_b.size(), A_sa_b.size(), s_b.size(), a_b.size(), log_pi_old_sa_b.size())
                
                # update policy network by clipping
                self.policy_optim.zero_grad()
                # [b, 1]
                log_pi_sa = self.policy.get_log_prob(s_b, a_b)
                # ratio = exp(log_Pi(a|s) - log_Pi_old(a|s)) = Pi(a|s) / Pi_old(a|s)
                # we use log_pi for stability of numerical operation
                # [b, 1] => [b]
                # this is element-wise comparing.
                # we add negative symbol to convert gradient ascent to gradient descent
                surrogate = - (log_pi_sa * v_target_b).mean()
                policy_loss += surrogate.item()

                # backprop
                surrogate.backward()
                # gradient clipping, for stability
                torch.nn.utils.clip_grad_norm(self.policy.parameters(), 10)
                # self.lock.acquire() # retain lock to update weights
                self.policy_optim.step()
                # self.lock.release() # release lock
            
            policy_loss /= optim_chunk_num
            logging.debug('<<dialog policy pg>> epoch {}, iteration {}, policy, loss {}'.format(epoch, i, policy_loss))
        
        if (epoch+1) % self.save_per_epoch == 0:
            self.save(self.save_dir, epoch)