Ejemplo n.º 1
0
def test_multiyear_diagnostic_table(records_2009):
    behv = Behavior()
    calc = Calculator(policy=Policy(), records=records_2009, behavior=behv)
    with pytest.raises(ValueError):
        adt = multiyear_diagnostic_table(calc, 0)
    with pytest.raises(ValueError):
        adt = multiyear_diagnostic_table(calc, 20)
    adt = multiyear_diagnostic_table(calc, 3)
    assert isinstance(adt, pd.DataFrame)
    behv.update_behavior({2013: {'_BE_sub': [0.3]}})
    assert calc.behavior.has_response()
    adt = multiyear_diagnostic_table(calc, 3)
    assert isinstance(adt, pd.DataFrame)
Ejemplo n.º 2
0
def test_myr_diag_table_wo_behv(records_2009):
    pol = Policy()
    reform = {
        2013: {
            '_II_rt7': [0.33],
            '_PT_rt7': [0.33],
        }
    }
    pol.implement_reform(reform)
    calc = Calculator(policy=pol, records=records_2009)
    calc.calc_all()
    liabilities_x = (calc.records.combined * calc.records.s006).sum()
    adt = multiyear_diagnostic_table(calc, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1000000000
    assert_almost_equal(liabilities_x, liabilities_y, 2)
Ejemplo n.º 3
0
def test_myr_diag_table_wo_behv(cps_subsample):
    reform = {
        2013: {
            '_II_rt7': [0.33],
            '_PT_rt7': [0.33],
        }
    }
    pol = Policy()
    pol.implement_reform(reform)
    calc = Calculator(policy=pol,
                      records=Records.cps_constructor(data=cps_subsample))
    calc.calc_all()
    liabilities_x = (calc.records.combined * calc.records.s006).sum()
    adt = multiyear_diagnostic_table(calc, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1e9
    assert np.allclose(liabilities_x, liabilities_y, atol=0.01, rtol=0.0)
Ejemplo n.º 4
0
def test_myr_diag_table_w_behv(cps_subsample):
    pol = Policy()
    rec = Records.cps_constructor(data=cps_subsample)
    year = rec.current_year
    beh = Behavior()
    calc = Calculator(policy=pol, records=rec, behavior=beh)
    assert calc.current_year == year
    reform = {year: {'_II_rt7': [0.33], '_PT_rt7': [0.33]}}
    pol.implement_reform(reform)
    reform_behav = {year: {'_BE_sub': [0.4], '_BE_cg': [-3.67]}}
    beh.update_behavior(reform_behav)
    calc_clp = calc.current_law_version()
    calc_beh = Behavior.response(calc_clp, calc)
    calc_beh.calc_all()
    liabilities_x = (calc_beh.records.combined * calc_beh.records.s006).sum()
    adt = multiyear_diagnostic_table(calc_beh, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1e9
    assert np.allclose(liabilities_x, liabilities_y, atol=0.01, rtol=0.0)
Ejemplo n.º 5
0
def test_multiyear_diagnostic_table(cps_subsample):
    rec = Records.cps_constructor(data=cps_subsample)
    pol = Policy()
    beh = Behavior()
    calc = Calculator(policy=pol, records=rec, behavior=beh)
    with pytest.raises(ValueError):
        multiyear_diagnostic_table(calc, 0)
    with pytest.raises(ValueError):
        multiyear_diagnostic_table(calc, 20)
    adt = multiyear_diagnostic_table(calc, 3)
    assert isinstance(adt, pd.DataFrame)
    beh.update_behavior({2013: {'_BE_sub': [0.3]}})
    calc = Calculator(policy=pol, records=rec, behavior=beh)
    assert calc.behavior.has_response()
    adt = multiyear_diagnostic_table(calc, 3)
    assert isinstance(adt, pd.DataFrame)
Ejemplo n.º 6
0
def test_myr_diag_table_w_behv(records_2009):
    pol = Policy()
    behv = Behavior()
    calc = Calculator(policy=pol, records=records_2009, behavior=behv)
    assert calc.current_year == 2013
    reform = {
        2013: {
            '_II_rt7': [0.33],
            '_PT_rt7': [0.33],
        }
    }
    pol.implement_reform(reform)
    reform_be = {2013: {'_BE_sub': [0.4], '_BE_cg': [-3.67]}}
    behv.update_behavior(reform_be)
    calc_clp = calc.current_law_version()
    calc_behv = Behavior.response(calc_clp, calc)
    calc_behv.calc_all()
    liabilities_x = (calc_behv.records.combined * calc_behv.records.s006).sum()
    adt = multiyear_diagnostic_table(calc_behv, 1)
    # extract combined liabilities as a float and
    # adopt units of the raw calculator data in liabilities_x
    liabilities_y = adt.iloc[19].tolist()[0] * 1000000000
    assert_almost_equal(liabilities_x, liabilities_y, 2)