Ejemplo n.º 1
0
npts = 7
iret =1
verby = True
nfval = 7
fval  = 1./(np.arange(7)*5.+10.)
fval  = np.append(fval, np.zeros(2049-nfval))
ccmin = -1.
ccmax = -1.
nl_in = TRho_in.size
iflsph_in = 1 # 0 flat, 1: love, 2: rayleigh
refdep_in = 0.
nmode = 1
# 
# 
c_out,d_out,TA_out,TC_out,TF_out,TL_out,TN_out,TRho_out=tdisp96.disprs(ilvry,dt,npts,iret,verby, nfval,fval,ccmin,ccmax,\
               d_in,TA_in,TC_in,TF_in,TL_in,TN_in,TRho_in,\
               nl_in, iflsph_in, refdep_in, nmode, 0.5, 0.5)


import tregn96
import tlegn96
import vmodel_cps
import numpy as np
model=vmodel_cps.Model1d(modelindex=2)
model.read('tregn96_src/test_model.txt')
d_in    = d_out
TA_in   = TA_out
TC_in   = TC_out
TL_in   = TL_out
TF_in   = TF_out
TN_in   = TN_out
Ejemplo n.º 2
0
 def solve_SH(self):
     """
     Solve SH motion dispersion curves, eigenfunctions and sensitivity kernels
     ===================================================================================================
     ::: output :::
     : model :
     dArr, AArr, CArr, FArr, LArr, NArr, rhoArr  - layerized model
     dsph, Asph, Csph, Fsph, Lsph, Nsph, rhosph  - flattening transformed Earth model
     If the model is a tilted hexagonal symmetric model:
     BcArr, BsArr, GcArr, GsArr, HcArr, HsArr    - 2-theta azimuthal terms 
     CcArr, CsArr                                - 4-theta azimuthal terms
     : dispersion :
     C, U    - phase/group velocity
     : eigenfunctions :
     ut, tut     - transverse displacement/stress functions
     dutdz       - derivatives of transverse displacement functions
     : velocity/density sensitivity kernels :
     dcdah/dcdav - vph/vpv kernel
     dcdbh/dcdbv - vsh/vsv kernel
     dcdn        - eta kernel
     dcdr        - density kernel
     : Love parameter/density sensitivity kernels, derived from the kernels above using chain rule :
     dcdA, dcdC, dcdF, dcdL, dcdN    - Love parameter kernels
     dcdrl                           - density kernel
     ===================================================================================================
     """
     #- root-finding algorithm using tdisp96, compute phase velocities
     if self.model.tilt:
         dArr, rhoArr, AArr, CArr, FArr, LArr, NArr, BcArr, BsArr, GcArr, GsArr, HcArr, HsArr, CcArr, CsArr =\
                     self.model.get_layer_tilt_model(self.dArr, 200, 1.)
         self.tilt = True
         self.egn96 = True
         self.BcArr = BcArr
         self.BsArr = BsArr
         self.GcArr = GcArr
         self.GsArr = GsArr
         self.HcArr = HcArr
         self.HsArr = HsArr
         self.CcArr = CcArr
         self.CsArr = CsArr
     else:
         dArr, rhoArr, AArr, CArr, FArr, LArr, NArr = self.model.get_layer_model(
             self.dArr, 200, 1.)
     nfval = self.freq.size
     if not self.model.flat:
         iflsph_in = 1
     else:
         iflsph_in = 0
     ilvry = 1
     # solve for phase velocity
     c_out,d_out,TA_out,TC_out,TF_out,TL_out,TN_out,TRho_out = tdisp96.disprs(ilvry, 1., nfval, 1, self.verbose, nfval, \
             np.append(self.freq, np.zeros(2049-nfval)), self.cmin,self.cmax, dArr, AArr,CArr,FArr,LArr,NArr,rhoArr, dArr.size,\
             iflsph_in, 0., self.nmodes, 0.5, 0.5)
     self.ilvry = ilvry
     self.C = c_out[:nfval]
     # Save flat transformed model is spherical flag is on
     if not self.model.flat:
         self.dsph = d_out
         self.Asph = TA_out
         self.Csph = TC_out
         self.Lsph = TL_out
         self.Fsph = TF_out
         self.Nsph = TN_out
         self.rhosph = TRho_out
     self.AArr = AArr
     self.CArr = CArr
     self.LArr = LArr
     self.FArr = FArr
     self.NArr = NArr
     self.rhoArr = rhoArr
     self.love2vel()
     #- compute eigenfunction/kernels
     if self.egn96:
         hs_in = 0.
         hr_in = 0.
         ohr_in = 0.
         ohs_in = 0.
         refdep_in = 0.
         dogam = False  # No attenuation
         nl_in = dArr.size
         k = 2. * np.pi / self.C / self.T
         k2d = np.tile(k, (nl_in, 1))
         k2d = k2d.T
         omega = 2. * np.pi / self.T
         omega2d = np.tile(omega, (nl_in, 1))
         omega2d = omega2d.T
         if not self.model.flat:
             d_in = d_out
             TA_in = TA_out
             TC_in = TC_out
             TF_in = TF_out
             TL_in = TL_out
             TN_in = TN_out
             TRho_in = TRho_out
         else:
             d_in = dArr
             TA_in = AArr
             TC_in = CArr
             TF_in = FArr
             TL_in = LArr
             TN_in = NArr
             TRho_in = rhoArr
         qai_in = np.ones(nl_in) * 1.e6
         qbi_in = np.ones(nl_in) * 1.e6
         etapi_in = np.zeros(nl_in)
         etasi_in = np.zeros(nl_in)
         frefpi_in = np.ones(nl_in)
         frefsi_in = np.ones(nl_in)
         # solve for group velocity, kernels and eigenfunctions
         u_out, ut, tut, dcdh,dcdav,dcdah,dcdbv,dcdbh,dcdn,dcdr = tlegn96.tlegn96(hs_in, hr_in, ohr_in, ohs_in,\
             refdep_in, dogam, nl_in, iflsph_in, d_in, TA_in, TC_in, TF_in, TL_in, TN_in, TRho_in, \
             qai_in,qbi_in,etapi_in,etasi_in, frefpi_in, frefsi_in, self.T.size, self.T, self.C)
         ######################################################
         # store output
         ######################################################
         self.U = u_out
         # eigenfunctions
         self.ut = ut[:nfval, :nl_in]
         self.tut = tut[:nfval, :nl_in]
         # sensitivity kernels for velocity parameters and density
         self.dcdah = np.zeros((nfval, nl_in), dtype=np.float32)
         self.dcdav = np.zeros((nfval, nl_in), dtype=np.float32)
         self.dcdbh = dcdbh[:nfval, :nl_in]
         self.dcdbv = dcdbv[:nfval, :nl_in]
         self.dcdr = dcdr[:nfval, :nl_in]
         self.dcdn = np.zeros((nfval, nl_in), dtype=np.float32)
         # Love parameters and density in the shape of nfval, nl_in
         # # A           = np.tile(TA_in, (nfval,1))
         # # C           = np.tile(TC_in, (nfval,1))
         # # F           = np.tile(TF_in, (nfval,1))
         # # L           = np.tile(TL_in, (nfval,1))
         # # N           = np.tile(TN_in, (nfval,1))
         # # rho         = np.tile(TRho_in, (nfval,1))
         # # d           = np.tile(d_in, (nfval,1))
         A = np.tile(AArr, (nfval, 1))
         C = np.tile(CArr, (nfval, 1))
         F = np.tile(FArr, (nfval, 1))
         L = np.tile(LArr, (nfval, 1))
         N = np.tile(NArr, (nfval, 1))
         rho = np.tile(rhoArr, (nfval, 1))
         d = np.tile(dArr, (nfval, 1))
         eta = F / (A - 2. * L)
         # derivative of eigenfunctions, $5.8 of R.Herrmann
         self.dutdz = self.tut / L
         # integrals for the Lagranian
         # # I0          = np.sum( rho*(self.ut**2)*d, axis=1)
         # # I1          = np.sum( N*(self.ut**2)*d, axis=1)
         # # I2          = np.sum( L*(self.dutdz**2)*d, axis=1)
         # # # # U           = (k*I1)/omega/I0
         # # I02d        = np.tile(I0, (nl_in, 1))
         # # I02d        = I02d.T
         # # U2d         = np.tile(self.U, (nl_in, 1))
         # # U2d         = U2d.T
         # # C2d         = np.tile(self.C, (nl_in, 1))
         # # C2d         = C2d.T
         ######################################################################################################################################
         # sensitivity kernels for Love parameters and density, derived from velocity kernels using chain rule
         # NOTE: benchmark of love kernels predict somewhat different perturbed values compared with those using velocity kernel
         # Possible reason:
         #       By using the chain rule, infinitesimal perturbations for all the parameters is assumed.
         #       However, for the benckmark cases, the perturbation can be large.
         #       e.g. ah = sqrt(A/rho), dah = 0.5/sqrt(A*rho)*dA. But, if dA is large, dah = sqrt(A+dA/rho) - sqrt(A/rho) != 0.5/sqrt(A*rho)*dA
         ######################################################################################################################################
         self.dcdA = np.zeros((nfval, nl_in), dtype=np.float32)
         self.dcdC = np.zeros((nfval, nl_in), dtype=np.float32)
         self.dcdF = np.zeros((nfval, nl_in), dtype=np.float32)
         self.dcdL = 0.5 / np.sqrt(L * rho) * self.dcdbv + 2. * F / (
             (A - 2. * L)**2) * self.dcdn
         self.dcdN = 0.5 / np.sqrt(N * rho) * self.dcdbh
         # density kernel
         self.dcdrl  = -0.5*self.dcdah*np.sqrt(A/(rho**3)) - 0.5*self.dcdav*np.sqrt(C/(rho**3))\
                         -0.5*self.dcdbh*np.sqrt(N/(rho**3)) -0.5*self.dcdbv*np.sqrt(L/(rho**3))\
                             + self.dcdr
Ejemplo n.º 3
0
    def compute_tcps(self,
                     wtype='ray',
                     verbose=0,
                     nmodes=1,
                     cmin=-1.,
                     cmax=-1.,
                     egn96=True):
        """
        compute surface wave dispersion of tilted TI model using tcps
        =====================================================================
        ::: input :::
        wtype       - wave type (Rayleigh or Love)
        =====================================================================
        """
        wtype = wtype.lower()
        if wtype == 'r' or wtype == 'rayleigh' or wtype == 'ray':
            nfval = self.TR.size
            freq = 1. / self.TR
            self.hArr = self.model.get_dArr()
            nl_in = self.hArr.size
            ilvry = 2
            self.eigkR.init_arr(nfval, nl_in, ilvry)
            #- root-finding algorithm using tdisp96, compute phase velocities
            if self.model.tilt:
                dArr, rhoArr, AArr, CArr, FArr, LArr, NArr, BcArr, BsArr, GcArr, GsArr, HcArr, HsArr, CcArr, CsArr =\
                            self.model.get_layer_tilt_model(self.hArr, 200, 1.)
                self.eigkR.get_AA(BcArr, BsArr, GcArr, GsArr, HcArr, HsArr,
                                  CcArr, CsArr)
            else:
                dArr, rhoArr, AArr, CArr, FArr, LArr, NArr = self.model.get_layer_model(
                    self.hArr, 200, 1.)
            self.eigkR.get_ref_model(AArr, CArr, FArr, LArr, NArr, rhoArr)
            self.eigkR.get_ETI(AArr, CArr, FArr, LArr, NArr, rhoArr)
            iflsph_in = 1  # spherical Earth
            # solve for phase velocity
            c_out,d_out,TA_out,TC_out,TF_out,TL_out,TN_out,TRho_out = tdisp96.disprs(ilvry, 1., nfval, 1, verbose, nfval, \
                    np.append(freq, np.zeros(2049-nfval)), cmin, cmax, dArr, AArr,CArr,FArr,LArr,NArr,rhoArr, dArr.size,\
                    iflsph_in, 0., nmodes, 0.5, 0.5)
            # store the reference dispersion curve
            self.indata.dispR.pvelref = c_out[:nfval]
            self.indata.dispR.pvelp = c_out[:nfval]
            #- compute eigenfunction/kernels
            if egn96:
                hs_in = 0.
                hr_in = 0.
                ohr_in = 0.
                ohs_in = 0.
                refdep_in = 0.
                dogam = False  # No attenuation
                k = 2. * np.pi / c_out[:nfval] / self.TR
                k2d = np.tile(k, (nl_in, 1))
                k2d = k2d.T
                omega = 2. * np.pi / self.TR
                omega2d = np.tile(omega, (nl_in, 1))
                omega2d = omega2d.T
                # use spherical transformed model parameters
                d_in = d_out
                TA_in = TA_out
                TC_in = TC_out
                TF_in = TF_out
                TL_in = TL_out
                TN_in = TN_out
                TRho_in = TRho_out

                qai_in = np.ones(nl_in) * 1.e6
                qbi_in = np.ones(nl_in) * 1.e6
                etapi_in = np.zeros(nl_in)
                etasi_in = np.zeros(nl_in)
                frefpi_in = np.ones(nl_in)
                frefsi_in = np.ones(nl_in)
                # solve for group velocity, kernels and eigenfunctions
                u_out, ur, tur, uz, tuz, dcdh,dcdav,dcdah,dcdbv,dcdbh,dcdn,dcdr = tregn96.tregn96(hs_in, hr_in, ohr_in, ohs_in,\
                    refdep_in, dogam, nl_in, iflsph_in, d_in, TA_in, TC_in, TF_in, TL_in, TN_in, TRho_in, \
                    qai_in,qbi_in,etapi_in,etasi_in, frefpi_in, frefsi_in, self.TR.size, self.TR, c_out[:nfval])
                ######################################################
                # store output
                ######################################################
                self.indata.dispR.gvelp = np.float32(u_out)
                # eigenfunctions
                self.eigkR.get_eigen_psv(np.float32(uz[:nfval,:nl_in]), np.float32(tuz[:nfval,:nl_in]),\
                                         np.float32(ur[:nfval,:nl_in]), np.float32(tur[:nfval,:nl_in]))
                # sensitivity kernels for velocity parameters and density
                self.eigkR.get_vkernel_psv(np.float32(dcdah[:nfval,:nl_in]), np.float32(dcdav[:nfval,:nl_in]), np.float32(dcdbh[:nfval,:nl_in]),\
                        np.float32(dcdbv[:nfval,:nl_in]), np.float32(dcdn[:nfval,:nl_in]), np.float32(dcdr[:nfval,:nl_in]))
                # Love parameters and density in the shape of nfval, nl_in
                self.eigkR.compute_love_kernels()
                self.disprefR = True
        elif wtype == 'l' or wtype == 'love':
            nfval = self.TL.size
            freq = 1. / self.TL
            self.hArr = self.model.get_dArr()
            nl_in = self.hArr.size
            ilvry = 1
            self.eigkL.init_arr(nfval, nl_in, ilvry)
            #- root-finding algorithm using tdisp96, compute phase velocities
            if self.model.tilt:
                dArr, rhoArr, AArr, CArr, FArr, LArr, NArr, BcArr, BsArr, GcArr, GsArr, HcArr, HsArr, CcArr, CsArr =\
                            self.model.get_layer_tilt_model(self.hArr, 200, 1.)
                self.eigkL.get_AA(BcArr, BsArr, GcArr, GsArr, HcArr, HsArr,
                                  CcArr, CsArr)
            else:
                dArr, rhoArr, AArr, CArr, FArr, LArr, NArr = self.model.get_layer_model(
                    self.hArr, 200, 1.)
            self.eigkL.get_ref_model(AArr, CArr, FArr, LArr, NArr, rhoArr)
            self.eigkR.get_ETI(AArr, CArr, FArr, LArr, NArr, rhoArr)
            iflsph_in = 1  # spherical Earth
            # solve for phase velocity
            c_out,d_out,TA_out,TC_out,TF_out,TL_out,TN_out,TRho_out = tdisp96.disprs(ilvry, 1., nfval, 1, verbose, nfval, \
                np.append(freq, np.zeros(2049-nfval)), cmin, cmax, dArr, AArr,CArr,FArr,LArr,NArr,rhoArr, dArr.size,\
                iflsph_in, 0., nmodes, 0.5, 0.5)
            # store the reference dispersion curve
            self.indata.dispL.pvelref = c_out[:nfval]
            self.indata.dispL.pvelp = c_out[:nfval]
            if egn96:
                hs_in = 0.
                hr_in = 0.
                ohr_in = 0.
                ohs_in = 0.
                refdep_in = 0.
                dogam = False  # No attenuation
                nl_in = dArr.size
                k = 2. * np.pi / c_out[:nfval] / self.TL
                k2d = np.tile(k, (nl_in, 1))
                k2d = k2d.T
                omega = 2. * np.pi / self.TL
                omega2d = np.tile(omega, (nl_in, 1))
                omega2d = omega2d.T
                # use spherical transformed model parameters
                d_in = d_out
                TA_in = TA_out
                TC_in = TC_out
                TF_in = TF_out
                TL_in = TL_out
                TN_in = TN_out
                TRho_in = TRho_out

                qai_in = np.ones(nl_in) * 1.e6
                qbi_in = np.ones(nl_in) * 1.e6
                etapi_in = np.zeros(nl_in)
                etasi_in = np.zeros(nl_in)
                frefpi_in = np.ones(nl_in)
                frefsi_in = np.ones(nl_in)
                # solve for group velocity, kernels and eigenfunctions
                u_out, ut, tut, dcdh,dcdav,dcdah,dcdbv,dcdbh,dcdn,dcdr = tlegn96.tlegn96(hs_in, hr_in, ohr_in, ohs_in,\
                    refdep_in, dogam, nl_in, iflsph_in, d_in, TA_in, TC_in, TF_in, TL_in, TN_in, TRho_in, \
                    qai_in,qbi_in,etapi_in,etasi_in, frefpi_in, frefsi_in, self.TL.size, self.TL, c_out[:nfval])
                ######################################################
                # store output
                ######################################################
                self.indata.dispL.gvelp = np.float32(u_out)
                # eigenfunctions
                self.eigkL.get_eigen_sh(np.float32(ut[:nfval, :nl_in]),
                                        np.float32(tut[:nfval, :nl_in]))
                # sensitivity kernels for velocity parameters and density
                self.eigkL.get_vkernel_sh(np.float32(dcdbh[:nfval, :nl_in]),
                                          np.float32(dcdbv[:nfval, :nl_in]),
                                          np.float32(dcdr[:nfval, :nl_in]))
                # Love parameters and density in the shape of nfval, nl_in
                self.eigkL.compute_love_kernels()
                self.disprefL = True
        return
Ejemplo n.º 4
0
 def solve_PSV(self):
     """
     Solve for P-SV motion dispersion curves, eigenfunctions and sensitivity kernels
     ===================================================================================================
     ::: output :::
     : model :
     dArr, AArr, CArr, FArr, LArr, NArr, rhoArr  - layerized model
     dsph, Asph, Csph, Fsph, Lsph, Nsph, rhosph  - flattening transformed Earth model
     If the model is a tilted hexagonal symmetric model:
     BcArr, BsArr, GcArr, GsArr, HcArr, HsArr    - 2-theta azimuthal terms 
     CcArr, CsArr                                - 4-theta azimuthal terms
     : dispersion :
     C, U        - phase/group velocity
     : eigenfunctions :
     uz, ur      - vertical/radial displacement functions
     tuz, tur    - vertical/radial stress functions
     duzdz, durdz- derivatives of vertical/radial displacement functions
     : velocity/density sensitivity kernels :
     dcdah/dcdav - vph/vpv kernel
     dcdbh/dcdbv - vsh/vsv kernel
     dcdn        - eta kernel
     dcdr        - density kernel
     : Love parameters/density sensitivity kernels, derived from the kernels above using chain rule :
     dcdA, dcdC, dcdF, dcdL, dcdN    - Love parameter kernels
     dcdrl                           - density kernel
     ===================================================================================================
     """
     #- root-finding algorithm using tdisp96, compute phase velocities
     if self.model.tilt:
         dArr, rhoArr, AArr, CArr, FArr, LArr, NArr, BcArr, BsArr, GcArr, GsArr, HcArr, HsArr, CcArr, CsArr =\
                     self.model.get_layer_tilt_model(self.dArr, 200, 1.)
         self.tilt = True
         self.egn96 = True
         self.BcArr = BcArr
         self.BsArr = BsArr
         self.GcArr = GcArr
         self.GsArr = GsArr
         self.HcArr = HcArr
         self.HsArr = HsArr
         self.CcArr = CcArr
         self.CsArr = CsArr
     else:
         dArr, rhoArr, AArr, CArr, FArr, LArr, NArr = self.model.get_layer_model(
             self.dArr, 200, 1.)
     nfval = self.freq.size
     if not self.model.flat:
         iflsph_in = 1
     else:
         iflsph_in = 0
     ilvry = 2
     # solve for phase velocity
     c_out,d_out,TA_out,TC_out,TF_out,TL_out,TN_out,TRho_out = tdisp96.disprs(ilvry, 1., nfval, 1, self.verbose, nfval, \
             np.append(self.freq, np.zeros(2049-nfval)), self.cmin,self.cmax, dArr, AArr,CArr,FArr,LArr,NArr,rhoArr, dArr.size,\
             iflsph_in, 0., self.nmodes, 0.5, 0.5)
     self.ilvry = ilvry
     self.C = c_out[:nfval]
     # Save flat transformed model if spherical flag is on
     if not self.model.flat:
         self.dsph = d_out
         self.Asph = TA_out
         self.Csph = TC_out
         self.Lsph = TL_out
         self.Fsph = TF_out
         self.Nsph = TN_out
         self.rhosph = TRho_out
     self.AArr = AArr
     self.CArr = CArr
     self.LArr = LArr
     self.FArr = FArr
     self.NArr = NArr
     self.rhoArr = rhoArr
     self.love2vel()
     #- compute eigenfunction/kernels
     if self.egn96:
         hs_in = 0.
         hr_in = 0.
         ohr_in = 0.
         ohs_in = 0.
         refdep_in = 0.
         dogam = False  # No attenuation
         nl_in = dArr.size
         k = 2. * np.pi / self.C / self.T
         k2d = np.tile(k, (nl_in, 1))
         k2d = k2d.T
         omega = 2. * np.pi / self.T
         omega2d = np.tile(omega, (nl_in, 1))
         omega2d = omega2d.T
         if not self.model.flat:
             d_in = d_out
             TA_in = TA_out
             TC_in = TC_out
             TF_in = TF_out
             TL_in = TL_out
             TN_in = TN_out
             TRho_in = TRho_out
         else:
             d_in = dArr
             TA_in = AArr
             TC_in = CArr
             TF_in = FArr
             TL_in = LArr
             TN_in = NArr
             TRho_in = rhoArr
         qai_in = np.ones(nl_in) * 1.e6
         qbi_in = np.ones(nl_in) * 1.e6
         etapi_in = np.zeros(nl_in)
         etasi_in = np.zeros(nl_in)
         frefpi_in = np.ones(nl_in)
         frefsi_in = np.ones(nl_in)
         # solve for group velocity, kernels and eigenfunctions
         u_out, ur, tur, uz, tuz, dcdh,dcdav,dcdah,dcdbv,dcdbh,dcdn,dcdr = tregn96.tregn96(hs_in, hr_in, ohr_in, ohs_in,\
             refdep_in, dogam, nl_in, iflsph_in, d_in, TA_in, TC_in, TF_in, TL_in, TN_in, TRho_in, \
             qai_in,qbi_in,etapi_in,etasi_in, frefpi_in, frefsi_in, self.T.size, self.T, self.C)
         ######################################################
         # store output
         ######################################################
         self.U = u_out
         # eigenfunctions
         self.uz = uz[:nfval, :nl_in]
         self.tuz = tuz[:nfval, :nl_in]
         self.ur = ur[:nfval, :nl_in]
         self.tur = tur[:nfval, :nl_in]
         # sensitivity kernels for velocity parameters and density
         self.dcdah = dcdah[:nfval, :nl_in]
         self.dcdav = dcdav[:nfval, :nl_in]
         self.dcdbh = dcdbh[:nfval, :nl_in]
         self.dcdbv = dcdbv[:nfval, :nl_in]
         self.dcdr = dcdr[:nfval, :nl_in]
         self.dcdn = dcdn[:nfval, :nl_in]
         # Love parameters and density in the shape of nfval, nl_in
         # # # A           = np.tile(TA_in, (nfval,1))
         # # # C           = np.tile(TC_in, (nfval,1))
         # # # F           = np.tile(TF_in, (nfval,1))
         # # # L           = np.tile(TL_in, (nfval,1))
         # # # N           = np.tile(TN_in, (nfval,1))
         # # # rho         = np.tile(TRho_in, (nfval,1))
         # # # d           = np.tile(d_in, (nfval,1))
         A = np.tile(AArr, (nfval, 1))
         C = np.tile(CArr, (nfval, 1))
         F = np.tile(FArr, (nfval, 1))
         L = np.tile(LArr, (nfval, 1))
         N = np.tile(NArr, (nfval, 1))
         rho = np.tile(rhoArr, (nfval, 1))
         d = np.tile(dArr, (nfval, 1))
         eta = F / (A - 2. * L)
         # derivative of eigenfunctions, $5.8 of R.Herrmann
         self.durdz = 1. / L * self.tur - k2d * self.uz
         self.duzdz = k2d * F / C * self.ur + self.tuz / C
         # integrals for the Lagranian
         # # # I0          = np.sum( rho*(self.uz**2+self.ur**2)*d, axis=1)
         # # # I1          = np.sum( (L*(self.uz**2)+A*(self.ur**2))*d, axis=1)
         # # # I2          = np.sum( (L*self.uz*self.durdz - F*self.ur*self.duzdz)*d, axis=1)
         # # # I3          = np.sum( (L*(self.durdz**2)+C*(self.duzdz**2))*d, axis=1)
         # # U           = (k*I1+I2)/omega/I0
         # # # I02d        = np.tile(I0, (nl_in, 1))
         # # # I02d        = I02d.T
         # # # U2d         = np.tile(self.U, (nl_in, 1))
         # # # U2d         = U2d.T
         # # # C2d         = np.tile(self.C, (nl_in, 1))
         # # # C2d         = C2d.T
         ########################################################################################################################################
         # sensitivity kernels for Love parameters and density, derived from velocity kernels using chain rule
         # NOTE: benchmark of love kernels predict somewhat different perturbed values compared with those using velocity kernel
         # Possible reason:
         #       By using the chain rule, infinitesimal perturbations for all the parameters is assumed.
         #       However, for the benckmark cases, the perturbation can be large.
         #       e.g. ah = sqrt(A/rho), dah = 0.5/sqrt(A*rho)*dA. But, if dA is large, dah = sqrt(A+dA/rho) - sqrt(A/rho) != 0.5/sqrt(A*rho)*dA
         ########################################################################################################################################
         self.dcdA = 0.5 / np.sqrt(A * rho) * self.dcdah - F / (
             (A - 2. * L)**2) * self.dcdn
         self.dcdC = 0.5 / np.sqrt(C * rho) * self.dcdav
         self.dcdF = 1. / (A - 2. * L) * self.dcdn
         self.dcdL = 0.5 / np.sqrt(L * rho) * self.dcdbv + 2. * F / (
             (A - 2. * L)**2) * self.dcdn
         self.dcdN = 0.5 / np.sqrt(N * rho) * self.dcdbh
         # density kernel
         self.dcdrl  = -0.5*self.dcdah*np.sqrt(A/(rho**3)) - 0.5*self.dcdav*np.sqrt(C/(rho**3))\
                         -0.5*self.dcdbh*np.sqrt(N/(rho**3)) -0.5*self.dcdbv*np.sqrt(L/(rho**3))\
                             + self.dcdr
         # U2d3         = np.tile(U, (nl_in, 1))
         # U2d3         = U2d3.T
         # # # I0          = np.sum( rho*(self.uz**2+self.ur**2), axis=1)
         # # # I1          = np.sum( (L*(self.uz**2)+A*(self.ur**2)), axis=1)
         # # # I2          = np.sum( (L*self.uz*self.durdz - F*self.ur*self.duzdz), axis=1)
         # # # I3          = np.sum( (L*(self.durdz**2)+C*(self.duzdz**2)), axis=1)
         # self.I0 = I0
         # self.I1 = I1
         # self.I2 = I2
         # self.I3 = I3
         ##############################################
         # For benchmark purposes
         ##############################################
         # # derivative of eigenfunctions
         # self.durdz1 = -(self.ur[:,:-1] - self.ur[:,1:])/self.dArr[0]
         # self.duzdz1 = -(self.uz[:,:-1] - self.uz[:,1:])/self.dArr[0]
         # self.U1   = (k*I1+I2)/omega/I0
         #
         # # derived kernels from eigenfunctions, p 299 in Herrmann's notes
         # self.dcdah1 = eta*rho*np.sqrt(A/rho)*(self.ur**2 - 2.*eta/k2d*self.ur*self.duzdz)/U2d/I02d*d
         # # # self.dcdah2 = eta*rho*np.sqrt(A/rho)*(self.ur**2 - 2.*eta/k2d*self.ur*self.duzdz)/U2d3/I02d
         # self.dcdav1 = rho*np.sqrt(C/rho)*(1./k2d*self.duzdz)**2/U2d/I02d*d
         # self.dcdbv1 = rho*np.sqrt(L/rho)*( (self.uz)**2 + 2./k2d*self.uz*self.durdz + 4.*eta/k2d*self.ur*self.duzdz+\
         #             (1./k2d*self.durdz)**2 )/U2d/I02d*d
         # self.dcdr1  = -C2d**2/2./U2d/I02d*d*( (self.ur)**2 + (self.uz)**2)  \
         #                 + 1./2./U2d/I02d*d*A/rho*(self.ur)**2 + 1./2./U2d/I02d*d*C/rho*(1./k2d*self.duzdz)**2\
         #                 - 1./U2d/I02d*d/k2d*eta*(A/rho-2.*L/rho)*self.ur*self.duzdz \
         #                 + 1./2./U2d/I02d*d*L/rho*( (self.uz)**2 + 2./k2d*self.uz*self.durdz+ (1./k2d*self.durdz)**2)
         # self.dcdn1  = -1./U2d/I02d*d/k2d*F/eta*self.duzdz*self.ur
     return