Ejemplo n.º 1
0
def test_perf_ckks_enc_matmul(benchmark, matrix_shape):
    ctx = ckks_context()
    vector_shape = matrix_shape[-1]

    matrix, vec = generate_input(matrix_shape, vector_shape)

    ckks_vector = ts.enc_matmul_encoding(ctx, matrix.tolist())

    benchmark.pedantic(
        helper_perf,
        args=("enc_matmul", ckks_vector, vec, matrix_shape[0]),
        rounds=rounds,
        iterations=iterations,
    )
Ejemplo n.º 2
0
def test_enc_matmul_plain(context, matrix_shape, vector_size, precision):
    def generate_input(matrix_shape, vector_size):
        # generated random values
        matrix = np.random.randn(*matrix_shape)
        vector = np.random.randn(vector_size)

        return matrix, vector

    matrix, vector = generate_input(matrix_shape, vector_size)
    expected = matrix @ vector

    context.generate_galois_keys()
    ckks_vector = ts.enc_matmul_encoding(context, matrix.tolist())
    result = ckks_vector.enc_matmul_plain(vector.tolist(), matrix_shape[0])
    assert _almost_equal(result.decrypt(), expected,
                         precision), "Matrix multiplication is incorrect."