Ejemplo n.º 1
0
 def testConvertToShapeGenericInputs(self):
     shape = mtf.convert_to_shape([])
     self.assertEqual(shape.dims, [])
     shape = mtf.convert_to_shape(None)
     self.assertEqual(shape, None)
     with self.assertRaises(ValueError):
         mtf.convert_to_shape("x;4")
Ejemplo n.º 2
0
def run_toy_model_tpu():
  """Run a toy model on TPU."""
  iterations_per_loop = FLAGS.iterations
  mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)
  config = tpu_config.RunConfig(
      master=FLAGS.master,
      evaluation_master=FLAGS.master,
      model_dir=FLAGS.model_dir,
      save_checkpoints_steps=None,  # Disable the default saver
      save_checkpoints_secs=None,  # Disable the default saver
      log_step_count_steps=iterations_per_loop,
      tpu_config=tpu_config.TPUConfig(
          num_shards=mesh_shape.size,
          iterations_per_loop=iterations_per_loop,
          num_cores_per_replica=1,
          per_host_input_for_training=tpu_config.InputPipelineConfig.BROADCAST))
  classifier = tpu_estimator.TPUEstimator(
      use_tpu=True,
      model_fn=model_fn,
      config=config,
      train_batch_size=FLAGS.batch_size,
      eval_batch_size=FLAGS.batch_size)
  current_step = estimator_lib._load_global_step_from_checkpoint_dir(FLAGS.model_dir)  # pylint: disable=protected-access,line-too-long
  logging.info('Current step %d', current_step)
  while current_step < FLAGS.train_steps:
    next_checkpoint = min(current_step + FLAGS.steps_per_checkpoint,
                          FLAGS.train_steps)
    classifier.train(input_fn=ToyModelInput(), max_steps=next_checkpoint)
    current_step = next_checkpoint

    tf.logging.info('Starting to evaluate.')
    eval_results = classifier.evaluate(
        input_fn=ToyModelInput(),
        steps=156)  # since we have 10000 examples and batch_size = 64 per host
    logging.info('Eval results: %s', eval_results)
Ejemplo n.º 3
0
def get_placement_mesh(hparams):
  graph = mtf.Graph()
  mesh = mtf.Mesh(graph, "my_mesh")
  mesh_shape = mtf.convert_to_shape(hparams.mesh_shape)

  mesh_devices = [""] * mesh_shape.size
  mesh_impl = placement_mesh_impl.PlacementMeshImpl(
      mesh_shape, hparams.layout, mesh_devices)
  return mesh, mesh_impl
Ejemplo n.º 4
0
def _tensor_dim_to_mesh_dim_size(hparams, tensor_dim):
  """Inspect hparams to figure out how many ways tensor_dim gets split."""
  layout_rules = mtf.convert_to_layout_rules(hparams.layout)
  mesh_shape = mtf.convert_to_shape(hparams.mesh_shape)
  mesh_axis = layout_rules.tensor_dimension_to_mesh_axis(tensor_dim, mesh_shape)
  if mesh_axis is None:
    return 1
  else:
    return mesh_shape.dims[mesh_axis].size
Ejemplo n.º 5
0
    def estimator_model_fn(cls,
                           hparams,
                           features,
                           labels,
                           mode,
                           config=None,
                           params=None,
                           decode_hparams=None,
                           use_tpu=False,
                           xla_compile=False):
        del xla_compile
        hparams = copy.deepcopy(hparams)
        hparams.use_tpu = use_tpu
        # merge decode_hparams into hparams if present
        if mode == tf.estimator.ModeKeys.PREDICT and decode_hparams is not None:
            for k, v in six.iteritems(decode_hparams.values()):
                if hasattr(hparams, k) and getattr(hparams, k) != v:
                    tf.logging.warning(
                        "Overriding hparams.%s with %s from decode_hparams" %
                        (k, v))
                setattr(hparams, k, v)

        # Instantiate model
        data_parallelism = None
        if not use_tpu and config:
            data_parallelism = config.data_parallelism
        model = cls(hparams,
                    mode,
                    data_parallelism=data_parallelism,
                    decode_hparams=decode_hparams)

        global_step = tf.train.get_global_step()
        graph = mtf.Graph()
        mesh = mtf.Mesh(graph, "my_mesh")

        mesh_shape = mtf.convert_to_shape(hparams.mesh_shape)
        layout_rules = mtf.convert_to_layout_rules(hparams.layout)
        if use_tpu:
            mesh_devices = [""] * mesh_shape.size
            mesh_impl = simd_mesh_impl.SimdMeshImpl(
                mesh_shape, layout_rules, mesh_devices,
                params["context"].device_assignment)
        else:
            if len(data_parallelism.ps_devices) == 1:
                mesh_devices = [""] * mesh_shape.size
            else:
                assert len(data_parallelism.ps_devices) == mesh_shape.size
                mesh_devices = data_parallelism.ps_devices
            mesh_impl = placement_mesh_impl.PlacementMeshImpl(
                mesh_shape, layout_rules, mesh_devices)

        # PREDICT mode
        if mode == tf.estimator.ModeKeys.PREDICT:
            return model.estimator_spec_predict(features, mesh, mesh_impl,
                                                use_tpu)

        logits, loss = model.mtf_model_fn(features, mesh)
        if use_tpu and logits is not None:
            logits = mtf.anonymize(logits)

        # TRAIN mode
        if mode == tf.estimator.ModeKeys.TRAIN:
            var_grads = mtf.gradients(
                [loss], [v.outputs[0] for v in graph.trainable_variables])
            lr = learning_rate.learning_rate_schedule(hparams)
            mtf_lr = mtf.import_tf_tensor(
                mesh, tf.convert_to_tensor(lr, dtype=tf.float32),
                mtf.Shape([]))
            optimizer = mtf_optimize.make_optimizer(hparams, mtf_lr)
            update_ops = []
            for grad, var in zip(var_grads, graph.trainable_variables):
                update_ops.extend(optimizer.apply_grad(grad, var))

        lowering = mtf.Lowering(graph, {mesh: mesh_impl})

        tf_loss = lowering.export_to_tf_tensor(loss)
        tf_loss = tf.to_float(tf_loss)
        if logits and mode != tf.estimator.ModeKeys.TRAIN:
            tf_logits = lowering.export_to_tf_tensor(logits)

        if mode == tf.estimator.ModeKeys.TRAIN:
            tf_update_ops = [
                lowering.lowered_operation(op) for op in update_ops
            ]
            tf_update_ops.append(tf.assign_add(global_step, 1))
            # tf.logging.info("tf_update_ops: {}".format(tf_update_ops))
            train_op = tf.group(tf_update_ops)

        with mtf_utils.outside_all_rewrites():
            # Copy master variables to slices. Must be called first.
            restore_hook = mtf.MtfRestoreHook(lowering)
            saver = tf.train.Saver(tf.global_variables(),
                                   sharded=True,
                                   max_to_keep=10,
                                   keep_checkpoint_every_n_hours=2,
                                   defer_build=False,
                                   save_relative_paths=True)
            tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
            saver_listener = mtf.MtfCheckpointSaverListener(lowering)
            saver_hook = tf.train.CheckpointSaverHook(
                hparams.model_dir,
                save_steps=1000,
                saver=saver,
                listeners=[saver_listener])

        # EVAL mode
        if mode == tf.estimator.ModeKeys.EVAL:
            tf_logits = lowering.export_to_tf_tensor(logits)
            return model.estimator_spec_eval(features, tf_logits, labels,
                                             tf_loss, restore_hook, use_tpu)

        if use_tpu:
            _remove_summaries()
            return tpu_estimator.TPUEstimatorSpec(
                mode=tf.estimator.ModeKeys.TRAIN,
                loss=tf_loss,
                train_op=train_op,
                training_hooks=[restore_hook, saver_hook])
        else:
            return tf.estimator.EstimatorSpec(
                tf.estimator.ModeKeys.TRAIN,
                loss=tf_loss,
                train_op=train_op,
                training_chief_hooks=[restore_hook, saver_hook])
Ejemplo n.º 6
0
 def testConvertToShape(self, inputs):
     shape = mtf.convert_to_shape(inputs)
     self.assertEqual(
         shape, mtf.Shape([mtf.Dimension("x", 4),
                           mtf.Dimension("y", 8)]))
Ejemplo n.º 7
0
def model_fn(features, labels, mode, params):
  """A model is called by TpuEstimator."""
  del labels
  global_step = tf.train.get_global_step()
  graph = mtf.Graph()
  mesh = mtf.Mesh(graph, 'my_mesh')
  mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)
  mesh_devices = [''] * mesh_shape.size
  mesh_impl = SimdMeshImpl(
      mesh_shape, mtf.convert_to_layout_rules(FLAGS.layout),
      mesh_devices, params['context'].device_assignment)
  with mtf_utils.outside_all_rewrites():
    logits, loss = toy_model(features, mesh)

  # TRAIN mode
  if mode == tf.estimator.ModeKeys.TRAIN:
    var_grads = mtf.gradients([loss],
                              [v.outputs[0] for v in graph.trainable_variables])
    optimizer = mtf_optimize.AdafactorOptimizer()
    update_ops = []
    for grad, var in zip(var_grads, graph.trainable_variables):
      update_ops.extend(optimizer.apply_grad(grad, var))
  else:
    # for now, we can only export fully-replicated tensors.
    fully_replicated_logits = mtf.anonymize(logits)

  lowering = mtf.Lowering(graph, {mesh: mesh_impl})

  tf_loss = lowering.export_to_tf_tensor(loss)

  if mode == tf.estimator.ModeKeys.TRAIN:
    tf_update_ops = [lowering.lowered_operation(op) for op in update_ops]
    tf_update_ops.append(tf.assign_add(global_step, 1))
    tf.logging.info('tf_update_ops: {}'.format(tf_update_ops))
    train_op = tf.group(tf_update_ops)
  else:
    tf_logits = lowering.export_to_tf_tensor(fully_replicated_logits)

  with mtf_utils.outside_all_rewrites():
    # Copy master variables to slices. Must be called first.
    restore_hook = mtf.MtfRestoreHook(lowering)
    if mode == tf.estimator.ModeKeys.TRAIN:
      saver = tf.train.Saver(
          tf.global_variables(),
          sharded=True,
          max_to_keep=10,
          keep_checkpoint_every_n_hours=2,
          defer_build=False,
          save_relative_paths=True)
      tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
      saver_listener = mtf.MtfCheckpointSaverListener(lowering)
      saver_hook = tf.train.CheckpointSaverHook(
          FLAGS.model_dir,
          save_steps=1000,
          saver=saver,
          listeners=[saver_listener])

      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.TRAIN,
          loss=tf_loss,
          train_op=train_op,
          training_hooks=[restore_hook, saver_hook])
    elif mode == tf.estimator.ModeKeys.EVAL:

      def metric_fn(tf_logits):
        mean_logitss = tf.metrics.mean(tf_logits)
        return {'mean_logitss': mean_logitss}

      eval_metrics = (metric_fn, [tf_logits])

      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          evaluation_hooks=[restore_hook],
          loss=tf_loss,
          eval_metrics=eval_metrics)
Ejemplo n.º 8
0
def model_fn(features, labels, mode, params):
    """The model_fn argument for creating an Estimator."""
    tf.logging.info("features = %s labels = %s mode = %s params=%s" %
                    (features, labels, mode, params))
    global_step = tf.train.get_global_step()
    graph = mtf.Graph()
    mesh = mtf.Mesh(graph, "my_mesh")
    logits, loss = mnist_model(features, labels, mesh)
    mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape)
    layout_rules = mtf.convert_to_layout_rules(FLAGS.layout)
    mesh_size = mesh_shape.size
    mesh_devices = [""] * mesh_size
    mesh_impl = placement_mesh_impl.PlacementMeshImpl(mesh_shape, layout_rules,
                                                      mesh_devices)

    if mode == tf.estimator.ModeKeys.TRAIN:
        var_grads = mtf.gradients(
            [loss], [v.outputs[0] for v in graph.trainable_variables])
        optimizer = mtf_optimize.AdafactorOptimizer()
        update_ops = []
        for grad, var in zip(var_grads, graph.trainable_variables):
            update_ops.extend(optimizer.apply_grad(grad, var))

    lowering = mtf.Lowering(graph, {mesh: mesh_impl})
    restore_hook = mtf.MtfRestoreHook(lowering)

    tf_logits = lowering.export_to_tf_tensor(logits)
    if mode != tf.estimator.ModeKeys.PREDICT:
        tf_loss = lowering.export_to_tf_tensor(loss)
        tf.summary.scalar("loss", tf_loss)

    if mode == tf.estimator.ModeKeys.TRAIN:
        tf_update_ops = [lowering.lowered_operation(op) for op in update_ops]
        tf_update_ops.append(tf.assign_add(global_step, 1))
        train_op = tf.group(tf_update_ops)
        saver = tf.train.Saver(tf.global_variables(),
                               sharded=True,
                               max_to_keep=10,
                               keep_checkpoint_every_n_hours=2,
                               defer_build=False,
                               save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        saver_listener = mtf.MtfCheckpointSaverListener(lowering)
        saver_hook = tf.train.CheckpointSaverHook(FLAGS.model_dir,
                                                  save_steps=1000,
                                                  saver=saver,
                                                  listeners=[saver_listener])

        accuracy = tf.metrics.accuracy(labels=labels,
                                       predictions=tf.argmax(tf_logits,
                                                             axis=1))

        # Name tensors to be logged with LoggingTensorHook.
        tf.identity(tf_loss, "cross_entropy")
        tf.identity(accuracy[1], name="train_accuracy")

        # Save accuracy scalar to Tensorboard output.
        tf.summary.scalar("train_accuracy", accuracy[1])

        # restore_hook must come before saver_hook
        return tf.estimator.EstimatorSpec(
            tf.estimator.ModeKeys.TRAIN,
            loss=tf_loss,
            train_op=train_op,
            training_chief_hooks=[restore_hook, saver_hook])

    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            "classes": tf.argmax(tf_logits, axis=1),
            "probabilities": tf.nn.softmax(tf_logits),
        }
        return tf.estimator.EstimatorSpec(
            mode=tf.estimator.ModeKeys.PREDICT,
            predictions=predictions,
            prediction_hooks=[restore_hook],
            export_outputs={
                "classify": tf.estimator.export.PredictOutput(predictions)
            })
    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
            mode=tf.estimator.ModeKeys.EVAL,
            loss=tf_loss,
            evaluation_hooks=[restore_hook],
            eval_metric_ops={
                "accuracy":
                tf.metrics.accuracy(labels=labels,
                                    predictions=tf.argmax(tf_logits, axis=1)),
            })
Ejemplo n.º 9
0
 def testConvertToShape(self, inputs):
   shape = mtf.convert_to_shape(inputs)
   self.assertEqual(shape, mtf.Shape([mtf.Dimension(name="x", size=4),
                                      mtf.Dimension(name="y", size=8)]))