Ejemplo n.º 1
0
def hparams(hparam_dict=None, metric_dict=None):
    from tensorboardX.proto.plugin_hparams_pb2 import HParamsPluginData, SessionEndInfo, SessionStartInfo
    from tensorboardX.proto.api_pb2 import Experiment, HParamInfo, MetricInfo, MetricName, Status, DataType
    from six import string_types

    PLUGIN_NAME = 'hparams'
    PLUGIN_DATA_VERSION = 0

    EXPERIMENT_TAG = '_hparams_/experiment'
    SESSION_START_INFO_TAG = '_hparams_/session_start_info'
    SESSION_END_INFO_TAG = '_hparams_/session_end_info'

    # TODO: expose other parameters in the future.
    # hp = HParamInfo(name='lr',display_name='learning rate', type=DataType.DATA_TYPE_FLOAT64, domain_interval=Interval(min_value=10, max_value=100))  # noqa E501
    # mt = MetricInfo(name=MetricName(tag='accuracy'), display_name='accuracy', description='', dataset_type=DatasetType.DATASET_VALIDATION)  # noqa E501
    # exp = Experiment(name='123', description='456', time_created_secs=100.0, hparam_infos=[hp], metric_infos=[mt], user='******')  # noqa E501


    hps = []

    ssi = SessionStartInfo()
    for k, v in hparam_dict.items():
        if isinstance(v, string_types):
            ssi.hparams[k].string_value = v
            hps.append(HParamInfo(name=k, type=DataType.DATA_TYPE_STRING))
            continue

        if isinstance(v, bool):
            ssi.hparams[k].bool_value = v
            hps.append(HParamInfo(name=k, type=DataType.DATA_TYPE_BOOL))
            continue

        if not isinstance(v, int) or not isinstance(v, float):
            v = make_np(v)[0]
            ssi.hparams[k].number_value = v
            hps.append(HParamInfo(name=k, type=DataType.DATA_TYPE_FLOAT64))
            continue

        hps.append(HParamInfo(name=k, type=DataType.DATA_TYPE_UNSET))

    content = HParamsPluginData(session_start_info=ssi, version=PLUGIN_DATA_VERSION)
    smd = SummaryMetadata(plugin_data=SummaryMetadata.PluginData(plugin_name=PLUGIN_NAME,
                                                                 content=content.SerializeToString()))
    ssi = Summary(value=[Summary.Value(tag=SESSION_START_INFO_TAG, metadata=smd)])

    mts = [MetricInfo(name=MetricName(tag=k)) for k in metric_dict.keys()]

    exp = Experiment(hparam_infos=hps, metric_infos=mts)
    content = HParamsPluginData(experiment=exp, version=PLUGIN_DATA_VERSION)
    smd = SummaryMetadata(plugin_data=SummaryMetadata.PluginData(plugin_name=PLUGIN_NAME,
                                                                 content=content.SerializeToString()))
    exp = Summary(value=[Summary.Value(tag=EXPERIMENT_TAG, metadata=smd)])


    sei = SessionEndInfo(status=Status.STATUS_SUCCESS)
    content = HParamsPluginData(session_end_info=sei, version=PLUGIN_DATA_VERSION)
    smd = SummaryMetadata(plugin_data=SummaryMetadata.PluginData(plugin_name=PLUGIN_NAME,
                                                                 content=content.SerializeToString()))
    sei = Summary(value=[Summary.Value(tag=SESSION_END_INFO_TAG, metadata=smd)])
    return exp, ssi, sei
Ejemplo n.º 2
0
def make_session_start_summary(
    hparam_values,
    group_name: Optional[str] = None,
    start_time_secs: Optional[int] = None,
):
    """Assign values to the hyperparameters in the context of this session.

    Args:
        hparam_values: a dict of ``hp_name`` -> ``hp_value`` mappings
        group_name: optional group name for this session
        start_time_secs: optional starting time in seconds

    Returns:

    """
    if start_time_secs is None:
        import time

        start_time_secs = int(time.time())
    session_start_info = SessionStartInfo(group_name=group_name,
                                          start_time_secs=start_time_secs)

    for hp_name, hp_value in hparam_values.items():
        # Logging a None would raise an exception when setting session_start_info.hparams[hp_name].number_value = None.
        # Logging a float.nan instead would work, but that run would not show at all in the tensorboard hparam plugin.
        # The best thing to do here is to skip that value, it will show as a blank cell in the table view of the
        # tensorboard plugin. However, that run would not be shown in the parallel coord or in the scatter plot view.
        if hp_value is None:
            loguru.warning(
                f"Hyper parameter {hp_name} is `None`: the tensorboard hp plugin "
                f"will show this run in table view, but not in parallel coordinates "
                f"view or in scatter plot matrix view")
            continue

        if isinstance(hp_value, string_types):
            session_start_info.hparams[hp_name].string_value = hp_value
            continue

        if isinstance(hp_value, bool):
            session_start_info.hparams[hp_name].bool_value = hp_value
            continue

        if not isinstance(hp_value, (int, float)):
            hp_value = make_np(hp_value)[0]

        session_start_info.hparams[hp_name].number_value = hp_value

    session_start_content = HParamsPluginData(
        session_start_info=session_start_info, version=PLUGIN_DATA_VERSION)
    session_start_summary_metadata = SummaryMetadata(
        plugin_data=SummaryMetadata.PluginData(
            plugin_name=PLUGIN_NAME,
            content=session_start_content.SerializeToString()))
    session_start_summary = Summary(value=[
        Summary.Value(tag=SESSION_START_INFO_TAG,
                      metadata=session_start_summary_metadata)
    ])

    return session_start_summary