Ejemplo n.º 1
0
def create_conv_layer(input_data, input_channels_count, filters_count,
                      filter_shape, pool_shape, name):

    conv_shape = [
        filter_shape[0], filter_shape[1], input_channels_count, filters_count
    ]

    weights = tf.Variable(tf.truncated_normal(conv_shape, stddev=0.03),
                          name=name + '_weights')
    bias = tf.Variable(tf.truncated_normal([filters_count]),
                       name=name + '_bias')

    out_layer = tf.nn.conv2d(input_data, weights, [1, 1, 1, 1], padding='SAME')

    out_layer += bias

    out_layer = tf.nn.relu(out_layer)

    if pool_shape is None:
        return out_layer

    ksize = [1, pool_shape[0], pool_shape[1], 1]
    strides = [1, 2, 2, 1]
    out_layer = tf.nn.max_pool(out_layer,
                               ksize=ksize,
                               strides=strides,
                               padding='SAME')

    return out_layer
Ejemplo n.º 2
0
 def __init__(self):
     self.init_lrate = 0.001
     self.nHidden = 256
     self.seqLen = 75
     self.batchSize = 32
     self.maxClipping = 5
     self.pKeep = 0.8
     self.maxEpoch = 8
     self.displayStep = 100
     self.former = 0.0
     self.patience = 5
     self.maxPatience = 5
     self.maxTF1_validF1 = 0
     self.globalStep = tf.Variable(0, trainable=False)
     self.maxF1 = self.pre = self.rec = self.acc = self.maxTF1 = self.maxTpre = self.maxTrec = self.maxTacc = 0
     self.texti = loadData.TextIterator(self.batchSize, self.seqLen)
     self.validStep = int(self.texti.threshold / 3)
     self.lrate = tf.train.exponential_decay(
         self.init_lrate,
         global_step=self.globalStep,
         decay_steps=self.texti.threshold,
         decay_rate=0.8)
     self.addGlobal = self.globalStep.assign_add(1)
     self.net = NNManager.Net(self.nHidden, self.seqLen)
     self.loss, self.PredAcc, self.p = self.net.predicting(self.texti.rate)
     updates = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
     tVars = tf.trainable_variables()
     gradients, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tVars),
                                           self.maxClipping)
     optimizer = tf.train.AdamOptimizer(learning_rate=self.lrate)
     self.trainOP = optimizer.apply_gradients(zip(gradients, tVars))
     self.fileNameOutput = []
     self.start = time.time()
Ejemplo n.º 3
0
    def __conv(self,
               input,
               filter_width,
               filter_height,
               filters_count,
               stride_x,
               stride_y,
               padding='VALID',
               init_biases_with_the_constant_1=False,
               name='conv'):
        with tf.name_scope(name):
            input_channels = input.get_shape().as_list()[-1]
            filters = tf.Variable(self.__random_values(shape=[
                filter_height, filter_width, input_channels, filters_count
            ]),
                                  name='filters')
            convs = tf.nn.conv2d(input=input,
                                 filter=filters,
                                 strides=[1, stride_y, stride_x, 1],
                                 padding=padding,
                                 name='convs')
            if init_biases_with_the_constant_1:
                biases = tf.Variable(tf.ones(shape=[filters_count],
                                             dtype=tf.float32),
                                     name='biases')
            else:
                biases = tf.Variable(tf.zeros(shape=[filters_count],
                                              dtype=tf.float32),
                                     name='biases')
            preactivations = tf.nn.bias_add(convs,
                                            biases,
                                            name='preactivations')
            activations = tf.nn.relu(preactivations, name='activations')

            with tf.name_scope('filter_summaries'):
                self.__variable_summaries(filters)

            with tf.name_scope('bias_summaries'):
                self.__variable_summaries(biases)

            with tf.name_scope('preactivations_histogram'):
                tf.summary.histogram('preactivations', preactivations)

            with tf.name_scope('activations_histogram'):
                tf.summary.histogram('activations', activations)

            return activations
Ejemplo n.º 4
0
    def __fully_connected(self,
                          input,
                          inputs_count,
                          outputs_count,
                          relu=True,
                          init_biases_with_the_constant_1=False,
                          name='fully_connected'):
        with tf.name_scope(name):
            wights = tf.Variable(
                self.__random_values(shape=[inputs_count, outputs_count]),
                name='wights')
            if init_biases_with_the_constant_1:
                biases = tf.Variable(tf.ones(shape=[outputs_count],
                                             dtype=tf.float32),
                                     name='biases')
            else:
                biases = tf.Variable(tf.zeros(shape=[outputs_count],
                                              dtype=tf.float32),
                                     name='biases')
            preactivations = tf.nn.bias_add(tf.matmul(input, wights),
                                            biases,
                                            name='preactivations')
            if relu:
                activations = tf.nn.relu(preactivations, name='activations')

            with tf.name_scope('wight_summaries'):
                self.__variable_summaries(wights)

            with tf.name_scope('bias_summaries'):
                self.__variable_summaries(biases)

            with tf.name_scope('preactivations_histogram'):
                tf.summary.histogram('preactivations', preactivations)

            if relu:
                with tf.name_scope('activations_histogram'):
                    tf.summary.histogram('activations', activations)

            if relu:
                return activations
            else:
                return preactivations
Ejemplo n.º 5
0
 def choose_action(self, state, epsilon=1.):
     # 计算q值. epsilon为随机度. 为1时, 则为全随机选择action
     M_s = np.zeros([self.n_action, self.fai_s_size])
     for i in range(self.n_action):
         M_s[i] = self.sess.run(self.eval_M[i],
                                feed_dict={self.state, state})
     w = self.sess.graph.get_tensor_by_name('eval_net/R_s/r/w:0')
     # fai = self.sess.graph.get_tensor_by_name('eval_net/f_theta/fai_s:0')
     q_ = tf.matmul(w, tf.Variable(M_s))
     if np.random.uniform(0, 1) < epsilon:
         action = np.random.randint(self.n_action)
     else:
         action = np.argmax(q_)
     return action
Ejemplo n.º 6
0
def train(x_train, y_train):
    n_samples, n_features = x_train.shape

    w = tf.Variable(np.random.rand(input_dim, 1).astype(dtype='float32'),
                    name="weight")
    b = tf.Variable(0.0, dtype=tf.float32, name="bias")

    x = tf.placeholder(dtype=tf.float32, name='x')
    y = tf.placeholder(dtype=tf.float32, name='y')

    predictions = tf.matmul(x, w) + b
    loss = tf.reduce_mean(
        tf.log(1 + tf.exp(tf.multiply(-1.0 * y, predictions))))

    # optimizer = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss)
    optimizer = tf.train.ProximalGradientDescentOptimizer(
        learning_rate=learn_rate,
        l1_regularization_strength=0.1).minimize(loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for epoch in range(n_epochs):
            for idx in range(0, n_samples, batch_size):
                iE = min(n_samples, idx + batch_size)
                x_batch = x_train[idx:iE, :]
                y_batch = y_train[idx:iE, :]
                sess.run([optimizer], feed_dict={x: x_batch, y: y_batch})
            curr_w, curr_b = sess.run([w, b])

            for idx in range(len(curr_w)):
                if curr_w[idx] < threshold * -1:
                    curr_w[idx] += threshold
                else:
                    curr_w[idx] -= threshold
            sess.run([tf.assign(w, curr_w)])
    return curr_w, curr_b
Ejemplo n.º 7
0
 def __init__(self):
     self.embedding = self.getEmb()
     self.embSize = self.embedding.shape[1]
     self.vocabSize = self.embedding.shape[0]
     self.x = tf.placeholder(tf.int32, [None, 5])
     with tf.variable_scope("training_variable"):
         self.weights = {
             "MLP1":
             tf.Variable(
                 tf.truncated_normal(
                     shape=[self.embSize,
                            int(self.embSize / 2)],
                     stddev=0.08)),
             "MLP2":
             tf.Variable(
                 tf.truncated_normal(shape=[int(self.embSize / 2), 1],
                                     stddev=0.08))
         }
         self.biases = {
             "MLP1":
             tf.Variable(
                 tf.constant(0.01,
                             shape=[int(self.embSize / 2)],
                             dtype=tf.float32)),
             "MLP2":
             tf.Variable(tf.constant(0.01, shape=[1], dtype=tf.float32))
         }
     self.inputEmb = tf.nn.embedding_lookup(self.embedding, self.x)
     p1 = tf.matmul(tf.reshape(self.inputEmb, [-1, self.embSize]),
                    self.weights["MLP1"]) + self.biases["MLP1"]
     p1 = tf.matmul(tf.nn.relu(p1),
                    self.weights["MLP2"]) + self.biases["MLP2"]
     p1 = tf.reshape(p1, [-1, 5])
     p1 = tf.reshape(tf.nn.softmax(p1), [-1, 1, 5])
     self.finalState = tf.reshape(tf.matmul(p1, self.inputEmb),
                                  [-1, self.embSize])
Ejemplo n.º 8
0
if os.path.exists("./tmp/beginner-export"):
    shutil.rmtree("./tmp/beginner-export")

# Import data
# from tensorflow.examples.tutorials.mnist import input_data
import input_data

mnist = input_data.read_data_sets("tmp/data/", one_hot=True)

g = tf.Graph()

with g.as_default():
    # Create the model
    # x = tf.placeholder("float", [None, 784])
    x = tf.compat.v1.placeholder("float", [None, 784])
    W = tf.Variable(tf.zeros([784, 10]), name="vaiable_W")
    b = tf.Variable(tf.zeros([10]), name="variable_b")
    y = tf.nn.softmax(tf.matmul(x, W) + b)

    # Define loss and optimizer
    y_ = tf.compat.v1.placeholder("float", [None, 10])
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(
        cross_entropy)

    sess = tf.Session()

    # Train
    init = tf.initialize_all_variables()
    sess.run(init)
def gain(data_x, gain_parameters):
    '''Impute missing values in data_x
  
  Args:
    - data_x: original data with missing values
    - gain_parameters: GAIN network parameters:
      - batch_size: Batch size
      - hint_rate: Hint rate
      - alpha: Hyperparameter
      - iterations: Iterations
      
  Returns:
    - imputed_data: imputed data
  '''
    # Define mask matrix
    data_m = 1 - np.isnan(data_x)

    # System parameters
    batch_size = gain_parameters['batch_size']
    hint_rate = gain_parameters['hint_rate']
    alpha = gain_parameters['alpha']
    iterations = gain_parameters['iterations']

    # Other parameters
    no, dim = data_x.shape

    # Hidden state dimensions
    h_dim = int(dim)

    # Normalization
    norm_data, norm_parameters = normalization(data_x)
    norm_data_x = np.nan_to_num(norm_data, 0)

    ## GAIN architecture
    # Input placeholders
    # Data vector
    tf.disable_v2_behavior()
    X = tf.placeholder(tf.float32, shape=[None, dim])
    # Mask vector
    M = tf.placeholder(tf.float32, shape=[None, dim])
    # Hint vector
    H = tf.placeholder(tf.float32, shape=[None, dim])

    # Discriminator variables
    D_W1 = tf.Variable(xavier_init([dim * 2, h_dim]))  # Data + Hint as inputs
    D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))

    D_W2 = tf.Variable(xavier_init([h_dim, h_dim]))
    D_b2 = tf.Variable(tf.zeros(shape=[h_dim]))

    D_W3 = tf.Variable(xavier_init([h_dim, dim]))
    D_b3 = tf.Variable(tf.zeros(shape=[dim]))  # Multi-variate outputs

    theta_D = [D_W1, D_W2, D_W3, D_b1, D_b2, D_b3]

    #Generator variables
    # Data + Mask as inputs (Random noise is in missing components)
    G_W1 = tf.Variable(xavier_init([dim * 2, h_dim]))
    G_b1 = tf.Variable(tf.zeros(shape=[h_dim]))

    G_W2 = tf.Variable(xavier_init([h_dim, h_dim]))
    G_b2 = tf.Variable(tf.zeros(shape=[h_dim]))

    G_W3 = tf.Variable(xavier_init([h_dim, dim]))
    G_b3 = tf.Variable(tf.zeros(shape=[dim]))

    theta_G = [G_W1, G_W2, G_W3, G_b1, G_b2, G_b3]

    ## GAIN functions
    # Generator
    def generator(x, m):
        # Concatenate Mask and Data
        inputs = tf.concat(values=[x, m], axis=1)
        G_h1 = tf.nn.relu(tf.matmul(inputs, G_W1) + G_b1)
        G_h2 = tf.nn.relu(tf.matmul(G_h1, G_W2) + G_b2)
        # MinMax normalized output
        G_prob = tf.nn.sigmoid(tf.matmul(G_h2, G_W3) + G_b3)
        return G_prob

    # Discriminator
    def discriminator(x, h):
        # Concatenate Data and Hint
        inputs = tf.concat(values=[x, h], axis=1)
        D_h1 = tf.nn.relu(tf.matmul(inputs, D_W1) + D_b1)
        D_h2 = tf.nn.relu(tf.matmul(D_h1, D_W2) + D_b2)
        D_logit = tf.matmul(D_h2, D_W3) + D_b3
        D_prob = tf.nn.sigmoid(D_logit)
        return D_prob

    ## GAIN structure
    # Generator
    G_sample = generator(X, M)

    # Combine with observed data
    Hat_X = X * M + G_sample * (1 - M)

    # Discriminator
    D_prob = discriminator(Hat_X, H)

    ## GAIN loss
    D_loss_temp = -tf.reduce_mean(M * tf.log(D_prob + 1e-8) \
                                  + (1-M) * tf.log(1. - D_prob + 1e-8))

    G_loss_temp = -tf.reduce_mean((1 - M) * tf.log(D_prob + 1e-8))

    MSE_loss = \
    tf.reduce_mean((M * X - M * G_sample)**2) / tf.reduce_mean(M)

    D_loss = D_loss_temp
    G_loss = G_loss_temp + alpha * MSE_loss

    ## GAIN solver
    D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
    G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)

    ## Iterations
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Start Iterations
    for it in tqdm(range(iterations)):

        # Sample batch
        batch_idx = sample_batch_index(no, batch_size)
        X_mb = norm_data_x[batch_idx, :]
        M_mb = data_m[batch_idx, :]
        # Sample random vectors
        Z_mb = uniform_sampler(0, 0.01, batch_size, dim)
        # Sample hint vectors
        H_mb_temp = binary_sampler(hint_rate, batch_size, dim)
        H_mb = M_mb * H_mb_temp

        # Combine random vectors with observed vectors
        X_mb = M_mb * X_mb + (1 - M_mb) * Z_mb

        _, D_loss_curr = sess.run([D_solver, D_loss_temp],
                                  feed_dict={
                                      M: M_mb,
                                      X: X_mb,
                                      H: H_mb
                                  })
        _, G_loss_curr, MSE_loss_curr = \
        sess.run([G_solver, G_loss_temp, MSE_loss],
                 feed_dict = {X: X_mb, M: M_mb, H: H_mb})

    ## Return imputed data
    Z_mb = uniform_sampler(0, 0.01, no, dim)
    M_mb = data_m
    X_mb = norm_data_x
    X_mb = M_mb * X_mb + (1 - M_mb) * Z_mb

    imputed_data = sess.run([G_sample], feed_dict={X: X_mb, M: M_mb})[0]

    imputed_data = data_m * norm_data_x + (1 - data_m) * imputed_data

    # Renormalization
    imputed_data = renormalization(imputed_data, norm_parameters)

    # Rounding
    imputed_data = rounding(imputed_data, data_x)

    return imputed_data
Ejemplo n.º 10
0
    def __init__(self, nHidden, seqLen):
        self.representation_score = {}
        self.y = tf.placeholder(tf.float32, shape=[None, 1])
        self.extractFeature = ExtractFeature.ExtractFeature()
        self.imageFeature = ImageFeature.ImageFeature()
        newNet = tf.reduce_mean(self.imageFeature.outputLS, axis=0)
        self.textFeature = TextFeature.TextFeature(
            nHidden, seqLen, self.extractFeature.finalState, newNet)
        self.l2_para = 1e-7
        with tf.variable_scope("training_variable"):

            self.weights = {
                "MLP1":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 256],
                                        stddev=0.08,
                                        name="MLP1_W")),
                "MLP2":
                tf.Variable(
                    tf.truncated_normal(shape=[256, 1],
                                        stddev=0.08,
                                        name="MLP2_W")),
                "ATT_attr1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.extractFeature.embSize,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_1")),
                "ATT_attr1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 2 +
                        self.extractFeature.embSize,
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_2")),
                "ATT_attr1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        2 * self.extractFeature.embSize,
                        self.extractFeature.embSize
                    ],
                                        stddev=0.08,
                                        name="ATT_attr1_3")),
                "ATT_attr2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_attr2_1")),
                "ATT_attr2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_attr2_2")),
                "ATT_attr2_3":
                tf.Variable(
                    tf.truncated_normal(shape=[self.extractFeature.embSize, 1],
                                        stddev=0.08,
                                        name="ATT_attr2_3")),
                "ATT_img1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.textFeature.nHidden * 2,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden)
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_1")),
                "ATT_img1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.extractFeature.embSize,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_2")),
                "ATT_img1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize * 2,
                        self.imageFeature.defaultFeatureSize
                    ],
                                        stddev=0.08,
                                        name="ATT_image1_3")),
                "ATT_img2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_image2_1")),
                "ATT_img2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_image2_2")),
                "ATT_img2_3":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 1],
                        stddev=0.08,
                        name="ATT_image2_3")),
                "ATT_text1_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.imageFeature.defaultFeatureSize +
                        self.textFeature.nHidden * 2,
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden)
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_1")),
                "ATT_text1_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 2 +
                        self.extractFeature.embSize,
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2)
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_2")),
                "ATT_text1_3":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        self.textFeature.nHidden * 4,
                        self.textFeature.nHidden * 2
                    ],
                                        stddev=0.08,
                                        name="ATT_text1_3")),
                "ATT_text2_1":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.imageFeature.defaultFeatureSize / 2 +
                            self.textFeature.nHidden), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_text2_1")),
                "ATT_text2_2":
                tf.Variable(
                    tf.truncated_normal(shape=[
                        int(self.textFeature.nHidden +
                            self.extractFeature.embSize / 2), 1
                    ],
                                        stddev=0.08,
                                        name="ATT_text2_2")),
                "ATT_text2_3":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.textFeature.nHidden * 2, 1],
                        stddev=0.08,
                        name="ATT_text2_3")),
                "ATT_WI1":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 512],
                        stddev=0.08,
                        name="ATT_WI")),
                "ATT_WT1":
                tf.Variable(
                    tf.truncated_normal(shape=[2 * nHidden, 512],
                                        stddev=0.08,
                                        name="ATT_WT")),
                "ATT_WA1":
                tf.Variable(
                    tf.truncated_normal(shape=[200, 512],
                                        stddev=0.08,
                                        name="ATT_WA")),
                "ATT_WI2":
                tf.Variable(
                    tf.truncated_normal(
                        shape=[self.imageFeature.defaultFeatureSize, 512],
                        stddev=0.08,
                        name="ATT_WI2")),
                "ATT_WT2":
                tf.Variable(
                    tf.truncated_normal(shape=[2 * nHidden, 512],
                                        stddev=0.08,
                                        name="ATT_WT2")),
                "ATT_WA2":
                tf.Variable(
                    tf.truncated_normal(shape=[200, 512],
                                        stddev=0.08,
                                        name="ATT_WA2")),
                "ATT_WF_1":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_1")),
                "ATT_WF_2":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_2")),
                "ATT_WF_3":
                tf.Variable(
                    tf.truncated_normal(shape=[512, 1],
                                        stddev=0.08,
                                        name="ATT_WF_3")),
            }
            self.biases = {
                "MLP1":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[256],
                                dtype=tf.float32,
                                name="MLP1_b")),
                "MLP2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[1],
                                dtype=tf.float32,
                                name="MLP2_b")),
                "ATT_attr1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.extractFeature.embSize / 2)
                        ],
                        name="ATT_attr1_1")),
                "ATT_attr1_2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[
                                    int(self.textFeature.nHidden +
                                        self.extractFeature.embSize / 2)
                                ],
                                name="ATT_attr1_2")),
                "ATT_attr1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.extractFeature.embSize],
                                name="ATT_attr1_3")),
                "ATT_attr2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_1")),
                "ATT_attr2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_2")),
                "ATT_attr2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_attr2_3")),
                "ATT_img1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.textFeature.nHidden)
                        ],
                        name="ATT_image1_1")),
                "ATT_img1_2":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.extractFeature.embSize / 2)
                        ],
                        name="ATT_image1_2")),
                "ATT_img1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.imageFeature.defaultFeatureSize],
                                name="ATT_image1_3")),
                "ATT_img2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_1")),
                "ATT_img2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_2")),
                "ATT_img2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_image2_3")),
                "ATT_text1_1":
                tf.Variable(
                    tf.constant(
                        0.01,
                        shape=[
                            int(self.imageFeature.defaultFeatureSize / 2 +
                                self.textFeature.nHidden)
                        ],
                        name="ATT_text1_1")),
                "ATT_text1_2":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[
                                    int(self.textFeature.nHidden +
                                        self.extractFeature.embSize / 2)
                                ],
                                name="ATT_text1_2")),
                "ATT_text1_3":
                tf.Variable(
                    tf.constant(0.01,
                                shape=[self.textFeature.nHidden * 2],
                                name="ATT_text1_3")),
                "ATT_text2_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_1")),
                "ATT_text2_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_2")),
                "ATT_text2_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_text2_3")),
                "ATT_WW":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WW")),
                "ATT_WI":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WI")),
                "ATT_WT":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WT")),
                "ATT_WI1":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WI1")),
                "ATT_WT1":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WT1")),
                "ATT_WA":
                tf.Variable(tf.constant(0.01, shape=[512], name="ATT_WA")),
                "ATT_WF_1":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_1")),
                "ATT_WF_2":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_2")),
                "ATT_WF_3":
                tf.Variable(tf.constant(0.01, shape=[1], name="ATT_WF_3")),
            }
        print("newnet dimension :", newNet)

        imageVec = self.Attention(newNet, self.imageFeature.outputLS,
                                  self.textFeature.RNNState,
                                  self.extractFeature.finalState, "ATT_img1",
                                  "ATT_img2", 196, True)
        textVec = self.Attention(self.textFeature.RNNState,
                                 self.textFeature.outputs, newNet,
                                 self.extractFeature.finalState, "ATT_text1",
                                 "ATT_text2", self.textFeature.seqLen, False)
        attrVec = self.Attention(self.extractFeature.finalState,
                                 self.extractFeature.inputEmb, newNet,
                                 self.textFeature.RNNState, "ATT_attr1",
                                 "ATT_attr2", 5, False)

        attHidden = tf.tanh(
            tf.matmul(imageVec, self.weights["ATT_WI1"]) +
            self.biases["ATT_WI1"])
        attHidden2 = tf.tanh(
            tf.matmul(textVec, self.weights["ATT_WT1"]) +
            self.biases["ATT_WT1"])
        attHidden3 = tf.tanh(
            tf.matmul(attrVec, self.weights["ATT_WA1"]) +
            self.biases["ATT_WW"])
        scores1 = tf.matmul(attHidden,
                            self.weights["ATT_WF_1"]) + self.biases["ATT_WF_1"]
        scores2 = tf.matmul(attHidden2,
                            self.weights["ATT_WF_2"]) + self.biases["ATT_WF_2"]
        scores3 = tf.matmul(attHidden3,
                            self.weights["ATT_WF_3"]) + self.biases["ATT_WF_3"]
        scoreLS = [scores1, scores2, scores3]
        scoreLS = tf.nn.softmax(scoreLS, dim=0)
        imageVec = tf.tanh(
            tf.matmul(imageVec, self.weights["ATT_WI2"]) +
            self.biases["ATT_WI"])
        textVec = tf.tanh(
            tf.matmul(textVec, self.weights["ATT_WT2"]) +
            self.biases["ATT_WT"])
        attrVec = tf.tanh(
            tf.matmul(attrVec, self.weights["ATT_WA2"]) +
            self.biases["ATT_WA"])
        self.concatInput = scoreLS[0] * imageVec + scoreLS[
            1] * textVec + scoreLS[2] * attrVec
Ejemplo n.º 11
0
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
Ejemplo n.º 12
0
    "c3_filter": [3, 3, 256, 384],
    "c4_filter": [3, 3, 192, 384],
    "c5_filter": [3, 3, 192, 256]
}

# Fully connected shapes
fc_connection_shapes = {
    "f1_shape": [13 * 13 * 256, 4096],
    "f2_shape": [4096, 4096],
    "f3_shape": [4096, dataset_dict["num_labels"]]
}

# Weights for each layer
conv_weights = {
    "c1_weights":
    tf.Variable(tf.truncated_normal(conv_filter_shapes["c1_filter"]),
                name="c1_weights"),
    "c2_weights":
    tf.Variable(tf.truncated_normal(conv_filter_shapes["c2_filter"]),
                name="c2_weights"),
    "c3_weights":
    tf.Variable(tf.truncated_normal(conv_filter_shapes["c3_filter"]),
                name="c3_weights"),
    "c4_weights":
    tf.Variable(tf.truncated_normal(conv_filter_shapes["c4_filter"]),
                name="c4_weights"),
    "c5_weights":
    tf.Variable(tf.truncated_normal(conv_filter_shapes["c5_filter"]),
                name="c5_weights"),
    "f1_weights":
    tf.Variable(tf.truncated_normal(fc_connection_shapes["f1_shape"]),
                name="f1_weights"),
Ejemplo n.º 13
0
def main(trainModel=True,
         buildConfusionMatrix=True,
         restore=False,
         buildClassifiedMatrix=True):

    tf.disable_v2_behavior()

    input_images = tf.placeholder(tf.float32, [None, 28, 28], name="Input")
    real = tf.placeholder(tf.float32, [None, CLASSES], name="real_classes")

    layer1 = create_conv_layer(tf.reshape(input_images, [-1, 28, 28, 1]),
                               1,
                               28, [5, 5], [2, 2],
                               name="conv_no_pool")
    layer2 = create_conv_layer(layer1,
                               28,
                               56, [5, 5], [2, 2],
                               name='conv_with_pool')
    conv_result = tf.reshape(layer2, [-1, 7 * 7 * 56])

    relu_layer_weight = tf.Variable(tf.truncated_normal([7 * 7 * 56, 1000],
                                                        stddev=STDDEV * 2),
                                    name='relu_layer_weight')
    rely_layer_bias = tf.Variable(tf.truncated_normal([1000],
                                                      stddev=STDDEV / 2),
                                  name='rely_layer_bias')
    relu_layer = tf.matmul(conv_result, relu_layer_weight) + rely_layer_bias
    relu_layer = tf.nn.relu(relu_layer)
    relu_layer = tf.nn.dropout(relu_layer, DROPOUT)

    final_layer_weight = tf.Variable(tf.truncated_normal([1000, CLASSES],
                                                         stddev=STDDEV * 2),
                                     name='final_layer_weight')
    final_layer_bias = tf.Variable(tf.truncated_normal([CLASSES],
                                                       stddev=STDDEV / 2),
                                   name='final_layer_bias')
    final_layer = tf.matmul(relu_layer, final_layer_weight) + final_layer_bias

    predicts = tf.nn.softmax(final_layer)
    predicts_for_log = tf.clip_by_value(predicts, 1e-9, 0.999999999)

    #crossEntropy = -tf.reduce_mean(tf.reduce_sum(y * tf.log(y_clipped) + (1 - y) * tf.log(1 - y_clipped), axis=1))

    loss = -tf.reduce_mean(
        tf.reduce_sum(real * tf.log(predicts_for_log) +
                      (1 - real) * tf.log(1 - predicts_for_log),
                      axis=1),
        axis=0)
    #test = tf.reduce_sum(real * tf.log(predicts_for_log) + (1 - real) * tf.log(1 - predicts_for_log), axis=1)
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=final_layer, labels=real))
    optimiser = tf.train.GradientDescentOptimizer(
        learning_rate=LEARNING_RATE).minimize(loss)

    correct_prediction = tf.equal(tf.argmax(real, axis=1),
                                  tf.argmax(predicts, axis=1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    confusion_matrix = tf.confusion_matrix(labels=tf.argmax(real, axis=1),
                                           predictions=tf.argmax(predicts,
                                                                 axis=1),
                                           num_classes=CLASSES)

    saver = tf.train.Saver()

    # dataset = get_mnist_dataset()
    dataset = get_fashion_dataset()

    with tf.Session() as session:

        session.run(tf.global_variables_initializer())

        if restore:
            saver.restore(session, SAVE_PATH)

        if trainModel:
            train(input_images, real, session, optimiser, loss, accuracy,
                  saver, dataset)

        if buildConfusionMatrix:
            test_cm = session.run(confusion_matrix,
                                  feed_dict={
                                      input_images: dataset.test_x,
                                      real: dataset.test_y
                                  })
            draw_confusion_matrix(test_cm)

        if buildClassifiedMatrix:
            all_probs = session.run(predicts,
                                    feed_dict={
                                        input_images: dataset.test_x,
                                        real: dataset.test_y
                                    })
            max_failure_picture_index = [[(-1, -1.0)] * CLASSES
                                         for _ in range(CLASSES)]
            for i in range(len(all_probs)):
                real = np.argmax(dataset.test_y[i])
                for j in range(CLASSES):
                    if max_failure_picture_index[real][j][1] < all_probs[i][j]:
                        max_failure_picture_index[real][j] = (i,
                                                              all_probs[i][j])
            draw_max_failure_pictures(dataset.test_x,
                                      max_failure_picture_index)
Ejemplo n.º 14
0
 def __init__(self, nHidden, seqLen, guidence, newNet):
     self.nHidden = nHidden
     self.seqLen = seqLen
     tmp = self.getEmbedding()
     self.embedding = tf.Variable(tmp)
     with tf.variable_scope("training_variable"):
         self.weights = {
             "ATT":
             tf.Variable(
                 tf.truncated_normal(shape=[2 * self.nHidden, self.nHidden],
                                     stddev=0.08,
                                     name="text_att")),
             "ATTG":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="text_att2")),
             "ATTS":
             tf.Variable(
                 tf.truncated_normal(shape=[self.nHidden, 1],
                                     stddev=0.08,
                                     name="text_att3")),
             "Fw1":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_fw1")),
             "Fw2":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_fw2")),
             "Bw1":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_bw1")),
             "Bw2":
             tf.Variable(
                 tf.truncated_normal(shape=[200, self.nHidden],
                                     stddev=0.08,
                                     name="init_bw2")),
         }
         self.biases = {
             "Fw1":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Fw1")),
             "Fw2":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Fw2")),
             "Bw1":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Bw1")),
             "Bw2":
             tf.Variable(
                 tf.constant(0.01, shape=[self.nHidden], name="init_Bw2")),
         }
     self.X = tf.placeholder(tf.int32, [None, self.seqLen])
     self.pKeep = tf.placeholder(tf.float32)
     self.build(guidence, newNet)
import tensorflow._api.v2.compat.v1 as tf
import numpy as np
tf.reset_default_graph()
tf.compat.v1.disable_eager_execution()
tf.compat.v1.disable_v2_behavior()
tf.global_variables_initializer()
x = tf.placeholder(tf.float32, shape=[None, 4])
y = tf.placeholder(tf.float32, shape=[None, 1])
w = tf.Variable(tf.random_normal([4, 1]), name="weight")
b = tf.Variable(tf.random_normal([1]), name="bias")
hypo = tf.matmul(x, w) + b
saver = tf.train.Saver()
test_arr = [[12, 6.5, 15.7, 10.8]]
sess2 = tf.Session()
saver.restore(sess2, "./saved.ckpt")
predict = sess2.run(hypo, feed_dict={x: test_arr})
print(predict[0])
Ejemplo n.º 16
0
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
Ejemplo n.º 17
0
# Create a simple TF Graph 
# By Omid Alemi - Jan 2017
# Works with TF r1.0

# import tensorflow as tf
import tensorflow._api.v2.compat.v1 as tf
tf.disable_v2_behavior()

I = tf.placeholder(tf.float32, shape=[None,3], name='I') # input
W = tf.Variable(tf.zeros(shape=[3,2]), dtype=tf.float32, name='W') # weights
b = tf.Variable(tf.zeros(shape=[2]), dtype=tf.float32, name='b') # biases
O = tf.nn.relu(tf.matmul(I, W) + b, name='O') # activation / output

saver = tf.train.Saver()
init_op = tf.global_variables_initializer()

with tf.Session() as sess:
  sess.run(init_op)
  
  # save the graph
  tf.train.write_graph(sess.graph_def, '.', 'tfdroid.pbtxt')  

  # normally you would do some training here
  # but fornow we will just assign something to W
  sess.run(tf.assign(W, [[1, 2],[4,5],[7,8]]))
  sess.run(tf.assign(b, [1,1]))

  #save a checkpoint file, which will store the above assignment  
  saver.save(sess, 'tfdroid.ckpt')