def train_and_eval():
    """Train and evaluate a model."""
    save_summary_steps = FLAGS.save_summaries_steps
    save_checkpoints_steps = FLAGS.save_checkpoints_steps
    log_step_count = FLAGS.log_step_count

    config = tf_estimator.RunConfig(
        save_summary_steps=save_summary_steps,
        save_checkpoints_steps=save_checkpoints_steps,
        log_step_count_steps=log_step_count,
        keep_checkpoint_max=None)

    params = {'dummy': 0}
    estimator = tf_estimator.Estimator(model_fn=model_fn,
                                       model_dir=FLAGS.checkpoint_dir,
                                       config=config,
                                       params=params)

    train_spec = tf_estimator.TrainSpec(input_fn=train_input_fn,
                                        max_steps=FLAGS.train_steps)

    eval_spec = tf_estimator.EvalSpec(input_fn=eval_input_fn,
                                      start_delay_secs=60,
                                      steps=FLAGS.eval_examples,
                                      throttle_secs=60)

    tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec)
Ejemplo n.º 2
0
def run():
    """Runs train_and_evaluate."""
    hparams_filename = os.path.join(FLAGS.model_dir, 'hparams.json')
    if FLAGS.is_chief:
        gfile.MakeDirs(FLAGS.model_dir)
        hparams = core.read_hparams(FLAGS.hparams, get_hparams())
        core.write_hparams(hparams, hparams_filename)

    # Always load HParams from model_dir.
    hparams = core.wait_for_hparams(hparams_filename, get_hparams())

    grammar = grammar_utils.load_grammar(grammar_path=hparams.grammar_path)

    estimator = tf_estimator.Estimator(
        model_fn=functools.partial(model_fn, grammar=grammar),
        params=hparams,
        config=tf_estimator.RunConfig(
            save_checkpoints_secs=hparams.save_checkpoints_secs,
            keep_checkpoint_max=hparams.keep_checkpoint_max))

    train_spec = tf_estimator.TrainSpec(input_fn=functools.partial(
        input_ops.input_fn,
        input_pattern=hparams.train_pattern,
        grammar=grammar),
                                        max_steps=hparams.train_steps)

    # NOTE(leeley): The SavedModel will be stored under the
    # tf.saved_model.tag_constants.SERVING tag.
    latest_exporter = tf_estimator.LatestExporter(
        name='latest_exported_model',
        serving_input_receiver_fn=functools.partial(
            input_ops.serving_input_receiver_fn,
            params=hparams,
            num_production_rules=grammar.num_production_rules),
        exports_to_keep=hparams.exports_to_keep)

    eval_hooks = []
    if hparams.num_expressions_per_condition > 0:
        eval_hooks.append(
            metrics.GenerationWithLeadingPowersHook(
                generation_leading_powers_abs_sums=core.hparams_list_value(
                    hparams.generation_leading_powers_abs_sums),
                num_expressions_per_condition=hparams.
                num_expressions_per_condition,
                max_length=hparams.max_length,
                grammar=grammar))

    eval_spec = tf_estimator.EvalSpec(
        input_fn=functools.partial(input_ops.input_fn,
                                   input_pattern=hparams.tune_pattern,
                                   grammar=grammar),
        steps=hparams.eval_steps,
        exporters=latest_exporter,
        start_delay_secs=hparams.start_delay_secs,
        throttle_secs=hparams.throttle_secs,
        hooks=eval_hooks)

    tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec)
Ejemplo n.º 3
0
def main(argv):
    del argv  # Unused.

    if FLAGS.output_dir is None:
        raise ValueError("`output_dir` must be defined")

    if FLAGS.delete_existing and tf.gfile.Exists(FLAGS.output_dir):
        tf.logging.warn("Deleting old log directory at {}".format(
            FLAGS.output_dir))
        tf.gfile.DeleteRecursively(FLAGS.output_dir)
    tf.gfile.MakeDirs(FLAGS.output_dir)

    print("Logging to {}".format(FLAGS.output_dir))

    # Load the training or test split of the Celeb-A filenames.
    if FLAGS.celeba_dir is None:
        raise ValueError("`celeba_dir` must be defined")
    celeba_dataset_path = \
        os.path.join(FLAGS.celeba_dir, "Img/img_align_celeba/")
    celeba_partition_path = \
        os.path.join(FLAGS.celeba_dir, "Eval/list_eval_partition.txt")
    with open(celeba_partition_path, "r") as fid:
        partition = fid.readlines()
    filenames, splits = zip(*[x.split() for x in partition])
    filenames = np.array(
        [os.path.join(celeba_dataset_path, f) for f in filenames])
    splits = np.array([int(x) for x in splits])

    with tf.Graph().as_default():
        train_input_fn = prep_dataset_fn(filenames, splits, is_training=True)
        eval_input_fn = prep_dataset_fn(filenames, splits, is_training=False)
        estimator = tf_estimator.Estimator(
            model_fn,
            config=tf_estimator.RunConfig(
                model_dir=FLAGS.output_dir,
                save_checkpoints_steps=FLAGS.viz_steps,
            ),
        )

        train_spec = tf_estimator.TrainSpec(input_fn=train_input_fn,
                                            max_steps=FLAGS.max_steps)
        # Sad ugly hack here. Setting steps=None should go through all of the
        # validation set, but doesn't seem to, so I'm doing it manually.
        eval_spec = tf_estimator.EvalSpec(input_fn=eval_input_fn,
                                          steps=len(filenames[splits == 1]) //
                                          FLAGS.batch_size,
                                          start_delay_secs=0,
                                          throttle_secs=0)
        for _ in range(FLAGS.max_steps // FLAGS.viz_steps):
            tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec)
Ejemplo n.º 4
0
def main(_):
    cpu = os.cpu_count()
    tf_config = _tf_config(flags)  #1
    # 分布式需要 TF_CONFIG 环境变量
    os.environ['TF_CONFIG'] = json.dumps(tf_config)  #2
    session_config = ConfigProto(device_count={'CPU': cpu},
                                 inter_op_parallelism_threads=cpu // 2,
                                 intra_op_parallelism_threads=cpu // 2,
                                 device_filters=flags.device_filters,
                                 allow_soft_placement=True)
    strategy = experimental.ParameterServerStrategy()
    run_config = estimator.RunConfig(
        **{
            'save_summary_steps': 100,
            'save_checkpoints_steps': 1000,
            'keep_checkpoint_max': 10,
            'log_step_count_steps': 100,
            'train_distribute': strategy,
            'eval_distribute': strategy,
        }).replace(session_config=session_config)

    model = estimator.Estimator(
        model_fn=model_fn,
        model_dir='/home/axing/din/checkpoints/din',  #实际应用中是分布式文件系统
        config=run_config,
        params={
            'tf_config': tf_config,
            'decay_rate': 0.9,
            'decay_steps': 10000,
            'learning_rate': 0.1
        })

    train_spec = estimator.TrainSpec(
        input_fn=lambda: input_fn(mode='train',
                                  num_workers=flags.num_workers,
                                  worker_index=flags.worker_index,
                                  pattern='/home/axing/din/dataset/*'),  #3
        max_steps=1000  #4
    )

    # 这里就假设验证集和训练集地址一样了,实际应用中是肯定不一样的。
    eval_spec = estimator.EvalSpec(
        input_fn=lambda: input_fn(mode='eval',
                                  pattern='/home/axing/din/dataset/*'),
        steps=100,  # 每次验证 100 个 batch size 的数据
        throttle_secs=60  # 每隔至少 60 秒验证一次
    )
    estimator.train_and_evaluate(model, train_spec, eval_spec)
Ejemplo n.º 5
0
def train(data_base_path, output_dir, label_vocab_path, hparams_set_name,
          train_fold, eval_fold):
    """Constructs trains, and evaluates a model on the given input data.

  Args:
    data_base_path: str. Directory path containing tfrecords named like "train",
      "dev" and "test"
    output_dir: str. Path to save checkpoints.
    label_vocab_path: str. Path to tsv file containing columns
      _VOCAB_ITEM_COLUMN_NAME and _VOCAB_INDEX_COLUMN_NAME. See
      testdata/label_vocab.tsv for an example.
    hparams_set_name: name of a function in the hparams module which returns a
      tf.contrib.training.HParams object.
    train_fold: fold to use for training data (one of
          protein_dataset.DATA_FOLD_VALUES)
    eval_fold: fold to use for training data (one of
          protein_dataset.DATA_FOLD_VALUES)

  Returns:
    A tuple of the evaluation metrics, and the exported objects from Estimator.
  """
    hparams = get_hparams(hparams_set_name)
    label_vocab = parse_label_vocab(label_vocab_path)
    (estimator, train_spec,
     eval_spec) = _make_estimator_and_inputs(hparams=hparams,
                                             label_vocab=label_vocab,
                                             data_base_path=data_base_path,
                                             output_dir=output_dir,
                                             train_fold=train_fold,
                                             eval_fold=eval_fold)
    return tf_estimator.train_and_evaluate(estimator=estimator,
                                           train_spec=train_spec,
                                           eval_spec=eval_spec)
Ejemplo n.º 6
0
def main(unused_argv):
    flags.mark_flag_as_required('model_dir')
    flags.mark_flag_as_required('pipeline_config_path')
    config = tf_estimator.RunConfig(model_dir=FLAGS.model_dir)

    train_and_eval_dict = model_lib.create_estimator_and_inputs(
        run_config=config,
        pipeline_config_path=FLAGS.pipeline_config_path,
        train_steps=FLAGS.num_train_steps,
        sample_1_of_n_eval_examples=FLAGS.sample_1_of_n_eval_examples,
        sample_1_of_n_eval_on_train_examples=(
            FLAGS.sample_1_of_n_eval_on_train_examples))
    estimator = train_and_eval_dict['estimator']
    train_input_fn = train_and_eval_dict['train_input_fn']
    eval_input_fns = train_and_eval_dict['eval_input_fns']
    eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
    predict_input_fn = train_and_eval_dict['predict_input_fn']
    train_steps = train_and_eval_dict['train_steps']

    if FLAGS.checkpoint_dir:
        if FLAGS.eval_training_data:
            name = 'training_data'
            input_fn = eval_on_train_input_fn
        else:
            name = 'validation_data'
            # The first eval input will be evaluated.
            input_fn = eval_input_fns[0]
        if FLAGS.run_once:
            estimator.evaluate(input_fn,
                               steps=None,
                               checkpoint_path=tf.train.latest_checkpoint(
                                   FLAGS.checkpoint_dir))
        else:
            model_lib.continuous_eval(estimator, FLAGS.checkpoint_dir,
                                      input_fn, train_steps, name,
                                      FLAGS.max_eval_retries)
    else:
        train_spec, eval_specs = model_lib.create_train_and_eval_specs(
            train_input_fn,
            eval_input_fns,
            eval_on_train_input_fn,
            predict_input_fn,
            train_steps,
            eval_on_train_data=False)

        # Currently only a single Eval Spec is allowed.
        tf_estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
Ejemplo n.º 7
0
def main(_):
    inference_fn = network.inference
    hparams = contrib_training.HParams(learning_rate=FLAGS.learning_rate)
    model_fn = estimator.create_model_fn(inference_fn, hparams)
    config = tf_estimator.RunConfig(FLAGS.model_dir)
    tf_estimator = tf_estimator.Estimator(model_fn=model_fn, config=config)

    train_dataset_fn = dataset.create_dataset_fn(FLAGS.train_pattern,
                                                 height=FLAGS.image_size,
                                                 width=FLAGS.image_size,
                                                 batch_size=FLAGS.batch_size)

    eval_dataset_fn = dataset.create_dataset_fn(FLAGS.test_pattern,
                                                height=FLAGS.image_size,
                                                width=FLAGS.image_size,
                                                batch_size=FLAGS.batch_size)

    train_spec, eval_spec = estimator.create_train_and_eval_specs(
        train_dataset_fn, eval_dataset_fn)

    tf.logging.set_verbosity(tf.logging.INFO)
    tf_estimator.train_and_evaluate(tf_estimator, train_spec, eval_spec)
Ejemplo n.º 8
0
 def continuous_train_and_eval(self, continuous_eval_predicate_fn=None):
     del continuous_eval_predicate_fn
     tf_estimator.train_and_evaluate(self._estimator, self._train_spec,
                                     self._eval_spec)
     return self.evaluate()
Ejemplo n.º 9
0
def run_model():
    """Run experiment with tf.estimator.

  """
    params = {
        'kb_index': FLAGS.kb_index,
        'cm_width': FLAGS.cm_width,
        'cm_depth': FLAGS.cm_depth,
        'entity_emb_size': FLAGS.entity_emb_size,
        'relation_emb_size': FLAGS.relation_emb_size,
        'vocab_emb_size': FLAGS.vocab_emb_size,
        'max_set': FLAGS.max_set,
        'learning_rate': FLAGS.learning_rate,
        'gradient_clip': FLAGS.gradient_clip,
        'intermediate_top_k': FLAGS.intermediate_top_k,
        'use_cm_sketch': FLAGS.use_cm_sketch,
        'train_entity_emb': FLAGS.train_entity_emb,
        'train_relation_emb': FLAGS.train_relation_emb,
        'bert_handle': FLAGS.bert_handle,
        'train_bert': FLAGS.train_bert,
    }

    data_loader = DataLoader(params, FLAGS.name, get_root_dir(FLAGS.name),
                             FLAGS.kb_file, FLAGS.vocab_file)

    estimator_config = tf_estimator.RunConfig(
        save_checkpoints_steps=FLAGS.checkpoint_step)

    warm_start_settings = tf_estimator.WarmStartSettings(  # pylint: disable=g-long-ternary
        ckpt_to_initialize_from=FLAGS.load_model_dir,
        vars_to_warm_start=[
            'embeddings_mat/entity_embeddings_mat',
            'embeddings_mat/relation_embeddings_mat'
        ],
    ) if FLAGS.load_model_dir is not None else None

    estimator = tf_estimator.Estimator(
        model_fn=build_model_fn(FLAGS.name, data_loader, FLAGS.eval_name,
                                FLAGS.eval_metric_at_k),
        model_dir=FLAGS.checkpoint_dir + FLAGS.model_name,
        config=estimator_config,
        params=params,
        warm_start_from=warm_start_settings)

    if FLAGS.mode == 'train':
        train_input_fn = data_loader.build_input_fn(
            name=FLAGS.name,
            batch_size=FLAGS.batch_size,
            mode='train',
            epochs=FLAGS.epochs,
            n_take=-1,
            shuffle=True)

    eval_input_fn = data_loader.build_input_fn(name=FLAGS.name,
                                               batch_size=FLAGS.batch_size,
                                               mode='eval',
                                               epochs=1,
                                               n_take=FLAGS.num_eval,
                                               shuffle=False)

    # Define mode-specific operations
    if FLAGS.mode == 'train':
        train_spec = tf_estimator.TrainSpec(input_fn=train_input_fn)
        # Busy waiting for evaluation until new checkpoint comes out
        test_spec = tf_estimator.EvalSpec(input_fn=eval_input_fn,
                                          steps=FLAGS.num_online_eval,
                                          start_delay_secs=0,
                                          throttle_secs=FLAGS.eval_time)
        tf_estimator.train_and_evaluate(estimator, train_spec, test_spec)

    elif FLAGS.mode == 'eval':
        tf_evaluation = estimator.evaluate(eval_input_fn)
        print(tf_evaluation)

    elif FLAGS.mode == 'pred':
        tf_predictions = estimator.predict(eval_input_fn)

        if FLAGS.name.startswith('query2box'):
            task = FLAGS.name.split('_')[-1]
            metrics = Query2BoxMetrics(task, FLAGS.root_dir, data_loader)
        else:
            raise NotImplementedError()

        for tf_prediction in tqdm(tf_predictions):
            metrics.eval(tf_prediction)
        metrics.print_metrics()

    else:
        raise ValueError('mode not recognized: %s' % FLAGS.mode)
def main(_):

    # Modify the paths to save results when tuning hyperparameters.
    if FLAGS.node_encoder == "lstm":
        FLAGS.result_path = os.path.join(FLAGS.result_path,
                                         str(FLAGS.node_lstm_size))
    if FLAGS.node_encoder == "transformer":
        FLAGS.result_path = os.path.join(
            FLAGS.result_path, "max_steps_" + str(FLAGS.max_steps_no_increase))
        FLAGS.result_path = os.path.join(
            FLAGS.result_path,
            "hidden_unit_" + str(FLAGS.transformer_hidden_unit))
    if FLAGS.cross_vertical:
        FLAGS.result_path = os.path.join(
            FLAGS.result_path,
            "CKP-{0}/{1}/".format(FLAGS.checkpoint_vertical,
                                  FLAGS.checkpoint_websites))
        FLAGS.checkpoint_path = os.path.join(
            FLAGS.checkpoint_path,
            "{0}/{1}-results/".format(FLAGS.checkpoint_vertical,
                                      FLAGS.checkpoint_websites))

    tf.gfile.MakeDirs(
        os.path.join(
            FLAGS.result_path,
            "{0}/{1}-results/".format(FLAGS.vertical, FLAGS.source_website)))
    tf.logging.set_verbosity(tf.logging.INFO)

    if FLAGS.use_uniform_embedding:
        vocab_vertical = "all"
    else:
        vocab_vertical = FLAGS.vertical

    # Hyper-parameters.
    params = {
        "add_goldmine":
        FLAGS.add_goldmine,
        "add_leaf_types":
        FLAGS.add_leaf_types,
        "batch_size":
        FLAGS.batch_size,
        "buffer":
        1000,  # Buffer for shuffling. No need to care about.
        "chars":
        os.path.join(FLAGS.domtree_data_path,
                     "%s.vocab.chars.txt" % vocab_vertical),
        "circle_features":
        FLAGS.circle_features,
        "dim_word_embedding":
        FLAGS.dim_word_embedding,
        "dim_chars":
        FLAGS.dim_chars,
        "dim_label_embedding":
        FLAGS.dim_label_embedding,
        "dim_goldmine":
        30,
        "dim_leaf_type":
        20,
        "dim_positions":
        30,
        "dim_xpath_units":
        FLAGS.dim_xpath_units,
        "dropout":
        0.3,
        "epochs":
        FLAGS.epochs,
        "extract_node_emb":
        FLAGS.extract_node_emb,
        "filters":
        50,  # The dimension of char-level word representations.
        "friend_encoder":
        FLAGS.friend_encoder,
        "use_friend_semantic":
        FLAGS.use_friend_semantic,
        "goldmine_features":
        os.path.join(FLAGS.domtree_data_path, "vocab.goldmine_features.txt"),
        "glove":
        os.path.join(
            FLAGS.domtree_data_path,
            "%s.%d.emb.npz" % (vocab_vertical, FLAGS.dim_word_embedding)),
        "friend_hidden_size":
        FLAGS.friend_hidden_size,
        "kernel_size":
        3,  # CNN window size to embed char sequences.
        "last_hidden_layer_size":
        FLAGS.last_hidden_layer_size,
        "leaf_types":
        os.path.join(FLAGS.domtree_data_path,
                     "%s.vocab.leaf_types.txt" % vocab_vertical),
        "lstm_size":
        100,
        "max_steps_no_increase":
        FLAGS.max_steps_no_increase,
        "node_encoder":
        FLAGS.node_encoder,
        "node_filters":
        100,
        "node_kernel_size":
        5,
        "node_lstm_size":
        FLAGS.node_lstm_size,
        "num_oov_buckets":
        1,
        "objective":
        FLAGS.objective,
        "positions":
        os.path.join(FLAGS.domtree_data_path, "vocab.positions.txt"),
        "running_mode":
        FLAGS.run,
        "semantic_encoder":
        FLAGS.semantic_encoder,
        "source_website":
        FLAGS.source_website,
        "tags":
        os.path.join(FLAGS.domtree_data_path,
                     "%s.vocab.tags.txt" % (FLAGS.vertical)),
        "tags-all":
        os.path.join(FLAGS.domtree_data_path, "all.vocab.tags.txt"),
        "target_website":
        FLAGS.target_website,
        "transformer_hidden_unit":
        FLAGS.transformer_hidden_unit,
        "transformer_head":
        FLAGS.transformer_head,
        "transformer_hidden_layer":
        FLAGS.transformer_hidden_layer,
        "use_crf":
        FLAGS.use_crf,
        "use_friends_cnn":
        FLAGS.use_friends_cnn,
        "use_friends_discrete_feature":
        FLAGS.use_friends_discrete_feature,
        "use_prev_text_lstm":
        FLAGS.use_prev_text_lstm,
        "use_xpath_lstm":
        FLAGS.use_xpath_lstm,
        "use_uniform_label":
        FLAGS.use_uniform_label,
        "use_position_embedding":
        FLAGS.use_position_embedding,
        "words":
        os.path.join(FLAGS.domtree_data_path,
                     "%s.vocab.words.txt" % vocab_vertical),
        "xpath_lstm_size":
        100,
        "xpath_units":
        os.path.join(FLAGS.domtree_data_path,
                     "%s.vocab.xpath_units.txt" % vocab_vertical),
    }
    with tf.gfile.Open(
            os.path.join(
                FLAGS.result_path,
                "{0}/{1}-results/params.json".format(FLAGS.vertical,
                                                     FLAGS.source_website)),
            "w") as f:
        json.dump(params, f, indent=4, sort_keys=True)
    # Build estimator, train and evaluate.
    train_input_function = functools.partial(
        model_util.joint_input_fn,
        get_data_path(vertical=FLAGS.vertical,
                      website=FLAGS.source_website,
                      dev=False,
                      goldmine=False),
        get_data_path(vertical=FLAGS.vertical,
                      website=FLAGS.source_website,
                      dev=False,
                      goldmine=True),
        FLAGS.vertical,
        params,
        shuffle_and_repeat=True,
        mode="train")

    cfg = tf_estimator.RunConfig(save_checkpoints_steps=300,
                                 save_summary_steps=300,
                                 tf_random_seed=42)
    # Set up the checkpoint to load.
    if FLAGS.checkpoint_path:
        # The best model was always saved in "cpkt-601".
        checkpoint_file = FLAGS.checkpoint_path + "/model/model.ckpt-601"
        # Do not load parameters whose names contain the "label_dense".
        # These parameters are ought to be learned from scratch.
        ws = tf_estimator.WarmStartSettings(
            ckpt_to_initialize_from=checkpoint_file,
            vars_to_warm_start="^((?!label_dense).)*$")
        estimator = tf_estimator.Estimator(models.joint_extraction_model_fn,
                                           os.path.join(
                                               FLAGS.result_path,
                                               "{0}/{1}-results/model".format(
                                                   FLAGS.vertical,
                                                   FLAGS.source_website)),
                                           cfg,
                                           params,
                                           warm_start_from=ws)
    else:
        estimator = tf_estimator.Estimator(
            models.joint_extraction_model_fn,
            os.path.join(
                FLAGS.result_path,
                "{0}/{1}-results/model".format(FLAGS.vertical,
                                               FLAGS.source_website)), cfg,
            params)

    tf.gfile.MakeDirs(estimator.eval_dir())

    hook = early_stopping.stop_if_no_increase_hook(
        estimator,
        metric_name="f1",
        max_steps_without_increase=FLAGS.max_steps_no_increase,
        min_steps=300,
        run_every_steps=100,
        run_every_secs=None)
    train_spec = tf_estimator.TrainSpec(input_fn=train_input_function,
                                        hooks=[hook])

    if FLAGS.run == "train":
        eval_input_function = functools.partial(
            model_util.joint_input_fn,
            get_data_path(vertical=FLAGS.vertical,
                          website=FLAGS.source_website,
                          dev=True,
                          goldmine=False),
            get_data_path(vertical=FLAGS.vertical,
                          website=FLAGS.source_website,
                          dev=True,
                          goldmine=True),
            FLAGS.vertical,
            mode="all")
        eval_spec = tf_estimator.EvalSpec(input_fn=eval_input_function,
                                          steps=300,
                                          throttle_secs=1)
        tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec)

    target_websites = FLAGS.target_website.split("_")
    if FLAGS.source_website not in target_websites:
        target_websites = [FLAGS.source_website] + target_websites
    for target_website in target_websites:
        write_predictions(estimator=estimator,
                          vertical=FLAGS.vertical,
                          source_website=FLAGS.source_website,
                          target_website=target_website)
        model_util.page_hits_level_metric(result_path=FLAGS.result_path,
                                          vertical=FLAGS.vertical,
                                          source_website=FLAGS.source_website,
                                          target_website=target_website)
        model_util.site_level_voting(result_path=FLAGS.result_path,
                                     vertical=FLAGS.vertical,
                                     source_website=FLAGS.source_website,
                                     target_website=target_website)
        model_util.page_level_constraint(
            domtree_data_path=FLAGS.domtree_data_path,
            result_path=FLAGS.result_path,
            vertical=FLAGS.vertical,
            source_website=FLAGS.source_website,
            target_website=target_website)
Ejemplo n.º 11
0
def run_experiment(model_fn,
                   train_input_fn,
                   eval_input_fn,
                   exporters=None,
                   params=None,
                   params_fname=None):
  """Run an experiment using estimators.

  This is a light wrapper around typical estimator usage to avoid boilerplate
  code. Please use the following components separately for more complex
  usages.

  Args:
    model_fn: A model function to be passed to the estimator. See
      https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#args_1
    train_input_fn: An input function to be passed to the estimator that
      corresponds to the training data. See
      https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#train
    eval_input_fn: An input function to be passed to the estimator that
      corresponds to the held-out eval data. See
      https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#evaluate
    exporters: (Optional) An tf.estimator.Exporter or a list of them.
    params: (Optional) A dictionary of parameters that will be accessible by the
      model_fn and input_fns. The 'batch_size' and 'use_tpu' values will be set
      automatically.
    params_fname: (Optional) If specified, `params` will be written to here
      under `FLAGS.model_dir` in JSON format.
  """
  params = params if params is not None else {}
  params.setdefault("use_tpu", FLAGS.use_tpu)

  if FLAGS.model_dir and params_fname:
    tf.io.gfile.makedirs(FLAGS.model_dir)
    params_path = os.path.join(FLAGS.model_dir, params_fname)
    with tf.io.gfile.GFile(params_path, "w") as params_file:
      json.dump(params, params_file, indent=2, sort_keys=True)

  if params["use_tpu"]:
    if FLAGS.tpu_name:
      tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
          FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    else:
      tpu_cluster_resolver = None
    run_config = tf_estimator.tpu.RunConfig(
        cluster=tpu_cluster_resolver,
        master=FLAGS.master,
        model_dir=FLAGS.model_dir,
        tf_random_seed=FLAGS.tf_random_seed,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        tpu_config=tf_estimator.tpu.TPUConfig(
            iterations_per_loop=FLAGS.save_checkpoints_steps))
    if "batch_size" in params:
      # Let the TPUEstimator fill in the batch size.
      params.pop("batch_size")
    estimator = tf_estimator.tpu.TPUEstimator(
        use_tpu=True,
        model_fn=model_fn,
        params=params,
        config=run_config,
        train_batch_size=FLAGS.batch_size,
        eval_batch_size=FLAGS.eval_batch_size,
        predict_batch_size=FLAGS.eval_batch_size)
  else:
    run_config = tf_estimator.RunConfig(
        model_dir=FLAGS.model_dir,
        tf_random_seed=FLAGS.tf_random_seed,
        save_checkpoints_steps=FLAGS.save_checkpoints_steps,
        keep_checkpoint_max=FLAGS.keep_checkpoint_max)
    params["batch_size"] = FLAGS.batch_size
    estimator = tf_estimator.Estimator(
        config=run_config,
        model_fn=model_fn,
        params=params,
        model_dir=FLAGS.model_dir)

  train_spec = tf_estimator.TrainSpec(
      input_fn=train_input_fn,
      max_steps=FLAGS.num_train_steps)
  eval_spec = tf_estimator.EvalSpec(
      name="default",
      input_fn=eval_input_fn,
      exporters=exporters,
      start_delay_secs=FLAGS.eval_start_delay_secs,
      throttle_secs=FLAGS.eval_throttle_secs,
      steps=FLAGS.num_eval_steps)

  tf.logging.set_verbosity(tf.logging.INFO)
  tf_estimator.train_and_evaluate(
      estimator=estimator,
      train_spec=train_spec,
      eval_spec=eval_spec)
Ejemplo n.º 12
0
def run_model():
    """Instantiate and run model.

  Raises:
    ValueError: if model_name is not implemented.
    ValueError: if dataset is not implemented.
  """
    if FLAGS.model_name not in MODEL_KEYS:
        raise ValueError("Model {} is not implemented.".format(
            FLAGS.model_name))
    else:
        model_dir, model_name, print_dir = _initialize_model_dir()

    tf.logging.info(
        "Creating experiment, storing model files in {}".format(model_dir))

    # Instantiates dataset and gets input_fn
    if FLAGS.dataset == "law_school":
        load_dataset = LawSchoolInput(dataset_base_dir=FLAGS.dataset_base_dir,
                                      train_file=FLAGS.train_file,
                                      test_file=FLAGS.test_file)
    elif FLAGS.dataset == "compas":
        load_dataset = CompasInput(dataset_base_dir=FLAGS.dataset_base_dir,
                                   train_file=FLAGS.train_file,
                                   test_file=FLAGS.test_file)
    elif FLAGS.dataset == "uci_adult":
        load_dataset = UCIAdultInput(dataset_base_dir=FLAGS.dataset_base_dir,
                                     train_file=FLAGS.train_file,
                                     test_file=FLAGS.test_file)
    else:
        raise ValueError("Input_fn for {} dataset is not implemented.".format(
            FLAGS.dataset))

    train_input_fn = load_dataset.get_input_fn(
        mode=tf_estimator.ModeKeys.TRAIN, batch_size=FLAGS.batch_size)
    test_input_fn = load_dataset.get_input_fn(mode=tf_estimator.ModeKeys.EVAL,
                                              batch_size=FLAGS.batch_size)

    feature_columns, _, protected_groups, label_column_name = (
        load_dataset.get_feature_columns(
            embedding_dimension=FLAGS.embedding_dimension,
            include_sensitive_columns=FLAGS.include_sensitive_columns))

    # Constructs a int list enumerating the number of subgroups in the dataset.
    # # For example, if the dataset has two (binary) protected_groups. The dataset has 2^2 = 4 subgroups, which we enumerate as [0, 1, 2, 3].
    # # If the  dataset has two protected features ["race","sex"] that are cast as binary features race=["White"(0), "Black"(1)], and sex=["Male"(0), "Female"(1)].
    # # We call their catesian product ["White Male" (00), "White Female" (01), "Black Male"(10), "Black Female"(11)] as subgroups  which are enumerated as [0, 1, 2, 3].
    subgroups = np.arange(
        len(protected_groups) *
        2)  # Assumes each protected_group has two possible values.

    # Instantiates tf.estimator.Estimator object
    estimator = get_estimator(model_dir,
                              model_name,
                              feature_columns=feature_columns,
                              label_column_name=label_column_name)

    # Adds additional fairness metrics
    fairness_metrics = RobustFairnessMetrics(
        label_column_name=label_column_name,
        protected_groups=protected_groups,
        subgroups=subgroups,
        print_dir=print_dir)
    eval_metrics_fn = fairness_metrics.create_fairness_metrics_fn()
    estimator = tf_estimator.add_metrics(estimator, eval_metrics_fn)

    # Creates training and evaluation specifications
    train_steps = int(FLAGS.total_train_steps / FLAGS.batch_size)
    train_spec = tf_estimator.TrainSpec(input_fn=train_input_fn,
                                        max_steps=train_steps)
    eval_spec = tf_estimator.EvalSpec(input_fn=test_input_fn,
                                      steps=FLAGS.test_steps)

    tf_estimator.train_and_evaluate(estimator, train_spec, eval_spec)
    tf.logging.info("Training completed.")

    eval_results = estimator.evaluate(input_fn=test_input_fn,
                                      steps=FLAGS.test_steps)

    eval_results_path = os.path.join(model_dir, FLAGS.output_file_name)
    write_to_output_file(eval_results, eval_results_path)