Ejemplo n.º 1
0
 def testChainIldjWithPlaceholder(self):
   chain = Chain((Exp(), Exp()))
   samples = array_ops.placeholder(
       dtype=np.float32, shape=[None, 10], name="samples")
   ildj = chain.inverse_log_det_jacobian(samples, event_ndims=0)
   self.assertTrue(ildj is not None)
   with self.test_session():
     ildj.eval({samples: np.zeros([2, 10], np.float32)})
Ejemplo n.º 2
0
 def testChainIldjWithPlaceholder(self):
     chain = Chain((Exp(), Exp()))
     samples = array_ops.placeholder(dtype=np.float32,
                                     shape=[None, 10],
                                     name="samples")
     ildj = chain.inverse_log_det_jacobian(samples, event_ndims=0)
     self.assertTrue(ildj is not None)
     with self.cached_session():
         ildj.eval({samples: np.zeros([2, 10], np.float32)})
Ejemplo n.º 3
0
 def testBijectorIdentity(self):
     with self.test_session():
         chain = Chain()
         self.assertEqual("identity", chain.name)
         x = np.asarray([[[1., 2.], [2., 3.]]])
         self.assertAllClose(x, chain.forward(x).eval())
         self.assertAllClose(x, chain.inverse(x).eval())
         self.assertAllClose(0., chain.inverse_log_det_jacobian(x).eval())
         self.assertAllClose(0., chain.forward_log_det_jacobian(x).eval())
Ejemplo n.º 4
0
 def testBijectorIdentity(self):
   with self.test_session():
     chain = Chain()
     self.assertEqual("identity", chain.name)
     x = np.asarray([[[1., 2.],
                      [2., 3.]]])
     self.assertAllClose(x, chain.forward(x).eval())
     self.assertAllClose(x, chain.inverse(x).eval())
     self.assertAllClose(0., chain.inverse_log_det_jacobian(x).eval())
     self.assertAllClose(0., chain.forward_log_det_jacobian(x).eval())
Ejemplo n.º 5
0
 def testBijector(self):
     with self.test_session():
         chain = Chain((Exp(event_ndims=1), Softplus(event_ndims=1)))
         self.assertEqual("chain_of_exp_of_softplus", chain.name)
         x = np.asarray([[[1., 2.], [2., 3.]]])
         self.assertAllClose(1. + np.exp(x), chain.forward(x).eval())
         self.assertAllClose(np.log(x - 1.), chain.inverse(x).eval())
         self.assertAllClose(-np.sum(np.log(x - 1.), axis=2),
                             chain.inverse_log_det_jacobian(x).eval())
         self.assertAllClose(np.sum(x, axis=2),
                             chain.forward_log_det_jacobian(x).eval())
Ejemplo n.º 6
0
 def testBijector(self):
   with self.test_session():
     chain = Chain((Exp(event_ndims=1), Softplus(event_ndims=1)))
     self.assertEqual("chain_of_exp_of_softplus", chain.name)
     x = np.asarray([[[1., 2.],
                      [2., 3.]]])
     self.assertAllClose(1. + np.exp(x), chain.forward(x).eval())
     self.assertAllClose(np.log(x - 1.), chain.inverse(x).eval())
     self.assertAllClose(
         -np.sum(np.log(x - 1.), axis=2),
         chain.inverse_log_det_jacobian(x).eval())
     self.assertAllClose(
         np.sum(x, axis=2), chain.forward_log_det_jacobian(x).eval())
Ejemplo n.º 7
0
  def testChainAffineExp(self):
    scale_diag = np.array([1., 2., 3.], dtype=np.float32)
    chain = Chain([Affine(scale_diag=scale_diag), Exp()])
    x = [0., np.log(2., dtype=np.float32), np.log(3., dtype=np.float32)]
    y = [1., 4., 9.]
    self.assertAllClose(y, self.evaluate(chain.forward(x)))
    self.assertAllClose(x, self.evaluate(chain.inverse(y)))
    self.assertAllClose(
        np.log(6, dtype=np.float32) + np.sum(x),
        self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1)))

    self.assertAllClose(
        -np.log(6, dtype=np.float32) - np.sum(x),
        self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1)))
Ejemplo n.º 8
0
    def testChainAffineExp(self):
        scale_diag = np.array([1., 2., 3.], dtype=np.float32)
        chain = Chain([Affine(scale_diag=scale_diag), Exp()])
        x = [0., np.log(2., dtype=np.float32), np.log(3., dtype=np.float32)]
        y = [1., 4., 9.]
        self.assertAllClose(y, self.evaluate(chain.forward(x)))
        self.assertAllClose(x, self.evaluate(chain.inverse(y)))
        self.assertAllClose(
            np.log(6, dtype=np.float32) + np.sum(x),
            self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1)))

        self.assertAllClose(
            -np.log(6, dtype=np.float32) - np.sum(x),
            self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1)))