Ejemplo n.º 1
0
  def testKumaraswamyModeInvalid(self):
    with session.Session():
      a = np.array([1., 2, 3])
      b = np.array([2., 4, 1.2])
      dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=False)
      with self.assertRaisesOpError("Condition x < y.*"):
        dist.mode().eval()

      a = np.array([2., 2, 3])
      b = np.array([1., 4, 1.2])
      dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=False)
      with self.assertRaisesOpError("Condition x < y.*"):
        dist.mode().eval()
    def testKumaraswamyModeInvalid(self):
        with session.Session():
            a = np.array([1., 2, 3])
            b = np.array([2., 4, 1.2])
            dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=False)
            with self.assertRaisesOpError(
                    "Mode undefined for concentration1 <= 1."):
                dist.mode().eval()

            a = np.array([2., 2, 3])
            b = np.array([1., 4, 1.2])
            dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=False)
            with self.assertRaisesOpError(
                    "Mode undefined for concentration0 <= 1."):
                dist.mode().eval()
Ejemplo n.º 3
0
 def testKumaraswamySample(self):
   with self.test_session():
     a = 1.
     b = 2.
     kumaraswamy = kumaraswamy_lib.Kumaraswamy(a, b)
     n = constant_op.constant(100000)
     samples = kumaraswamy.sample(n)
     sample_values = samples.eval()
     self.assertEqual(sample_values.shape, (100000,))
     self.assertFalse(np.any(sample_values < 0.0))
     if not stats:
       return
     self.assertLess(
         stats.kstest(
             # Kumaraswamy is a univariate distribution.
             sample_values,
             lambda x: _kumaraswamy_cdf(1., 2., x))[0],
         0.01)
     # The standard error of the sample mean is 1 / (sqrt(18 * n))
     expected_mean = _kumaraswamy_moment(a, b, 1)
     self.assertAllClose(sample_values.mean(axis=0), expected_mean, atol=1e-2)
     expected_variance = _kumaraswamy_moment(a, b, 2) - _kumaraswamy_moment(
         a, b, 1)**2
     self.assertAllClose(
         np.cov(sample_values, rowvar=0), expected_variance, atol=1e-1)
Ejemplo n.º 4
0
 def testBProperty(self):
   a = [[1., 2, 3]]
   b = [[2., 4, 3]]
   with self.test_session():
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertEqual([1, 3], dist.concentration0.get_shape())
     self.assertAllClose(b, dist.concentration0.eval())
Ejemplo n.º 5
0
 def testKumaraswamyMode(self):
   with session.Session():
     a = np.array([1.1, 2, 3])
     b = np.array([2., 4, 1.2])
     expected_mode = _kumaraswamy_mode(a, b)
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertEqual(dist.mode().get_shape(), (3,))
     self.assertAllClose(expected_mode, dist.mode().eval())
Ejemplo n.º 6
0
  def testKumaraswamySampleMultipleTimes(self):
    with self.test_session():
      a_val = 1.
      b_val = 2.
      n_val = 100

      random_seed.set_random_seed(654321)
      kumaraswamy1 = kumaraswamy_lib.Kumaraswamy(
          concentration1=a_val, concentration0=b_val, name="kumaraswamy1")
      samples1 = kumaraswamy1.sample(n_val, seed=123456).eval()

      random_seed.set_random_seed(654321)
      kumaraswamy2 = kumaraswamy_lib.Kumaraswamy(
          concentration1=a_val, concentration0=b_val, name="kumaraswamy2")
      samples2 = kumaraswamy2.sample(n_val, seed=123456).eval()

      self.assertAllClose(samples1, samples2)
Ejemplo n.º 7
0
 def testPdfXStretchedInBroadcastWhenLowerRank(self):
   with self.test_session():
     a = [[1., 2], [2., 3]]
     b = [[1., 2], [2., 3]]
     x = [.5, .5]
     pdf = kumaraswamy_lib.Kumaraswamy(a, b).prob(x)
     expected_pdf = _kumaraswamy_pdf(a, b, x)
     self.assertAllClose(expected_pdf, pdf.eval())
     self.assertEqual((2, 2), pdf.get_shape())
Ejemplo n.º 8
0
 def testSimpleShapes(self):
   with self.test_session():
     a = np.random.rand(3)
     b = np.random.rand(3)
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertAllEqual([], dist.event_shape_tensor().eval())
     self.assertAllEqual([3], dist.batch_shape_tensor().eval())
     self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape)
     self.assertEqual(tensor_shape.TensorShape([3]), dist.batch_shape)
Ejemplo n.º 9
0
 def testComplexShapesBroadcast(self):
   with self.test_session():
     a = np.random.rand(3, 2, 2)
     b = np.random.rand(2, 2)
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertAllEqual([], dist.event_shape_tensor().eval())
     self.assertAllEqual([3, 2, 2], dist.batch_shape_tensor().eval())
     self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape)
     self.assertEqual(tensor_shape.TensorShape([3, 2, 2]), dist.batch_shape)
Ejemplo n.º 10
0
  def testKumaraswamyModeEnableAllowNanStats(self):
    with session.Session():
      a = np.array([1., 2, 3])
      b = np.array([2., 4, 1.2])
      dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=True)

      expected_mode = _kumaraswamy_mode(a, b)
      expected_mode[0] = np.nan
      self.assertEqual((3,), dist.mode().get_shape())
      self.assertAllClose(expected_mode, dist.mode().eval())

      a = np.array([2., 2, 3])
      b = np.array([1., 4, 1.2])
      dist = kumaraswamy_lib.Kumaraswamy(a, b, allow_nan_stats=True)

      expected_mode = _kumaraswamy_mode(a, b)
      expected_mode[0] = np.nan
      self.assertEqual((3,), dist.mode().get_shape())
      self.assertAllClose(expected_mode, dist.mode().eval())
Ejemplo n.º 11
0
 def testKumaraswamyMean(self):
   with session.Session():
     a = [1., 2, 3]
     b = [2., 4, 1.2]
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertEqual(dist.mean().get_shape(), (3,))
     if not stats:
       return
     expected_mean = _kumaraswamy_moment(a, b, 1)
     self.assertAllClose(expected_mean, dist.mean().eval())
Ejemplo n.º 12
0
 def testPdfAStretchedInBroadcastWhenSameRank(self):
   with self.test_session():
     a = [[1., 2]]
     b = [[1., 2]]
     x = [[.5, .5], [.3, .7]]
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     pdf = dist.prob(x)
     expected_pdf = _kumaraswamy_pdf(a, b, x)
     self.assertAllClose(expected_pdf, pdf.eval())
     self.assertEqual((2, 2), pdf.get_shape())
Ejemplo n.º 13
0
 def testPdfTwoBatchesNontrivialX(self):
   with self.test_session():
     a = [1., 2]
     b = [1., 2]
     x = [.3, .7]
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     pdf = dist.prob(x)
     expected_pdf = _kumaraswamy_pdf(a, b, x)
     self.assertAllClose(expected_pdf, pdf.eval())
     self.assertEqual((2,), pdf.get_shape())
Ejemplo n.º 14
0
 def testKumaraswamyEntropy(self):
   with session.Session():
     a = np.array([1., 2, 3])
     b = np.array([2., 4, 1.2])
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertEqual(dist.entropy().get_shape(), (3,))
     if not stats:
       return
     expected_entropy = (1 - 1. / a) + (
         1 - 1. / b) * _harmonic_number(b) + np.log(a * b)
     self.assertAllClose(expected_entropy, dist.entropy().eval())
Ejemplo n.º 15
0
 def testPdfUniformZeroBatch(self):
   with self.test_session():
     # This is equivalent to a uniform distribution
     a = 1.
     b = 1.
     x = np.array([.1, .2, .3, .5, .8], dtype=np.float32)
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     pdf = dist.prob(x)
     expected_pdf = _kumaraswamy_pdf(a, b, x)
     self.assertAllClose(expected_pdf, pdf.eval())
     self.assertEqual((5,), pdf.get_shape())
Ejemplo n.º 16
0
 def testKumaraswamyVariance(self):
   with session.Session():
     a = [1., 2, 3]
     b = [2., 4, 1.2]
     dist = kumaraswamy_lib.Kumaraswamy(a, b)
     self.assertEqual(dist.variance().get_shape(), (3,))
     if not stats:
       return
     expected_variance = _kumaraswamy_moment(a, b, 2) - _kumaraswamy_moment(
         a, b, 1)**2
     self.assertAllClose(expected_variance, dist.variance().eval())
 def testPdfXProper(self):
     a = [[1., 2, 3]]
     b = [[2., 4, 3]]
     with self.test_session():
         dist = kumaraswamy_lib.Kumaraswamy(a, b, validate_args=True)
         dist.prob([.1, .3, .6]).eval()
         dist.prob([.2, .3, .5]).eval()
         # Either condition can trigger.
         with self.assertRaisesOpError("sample must be non-negative"):
             dist.prob([-1., 0.1, 0.5]).eval()
         with self.assertRaisesOpError("sample must be no larger than `1`"):
             dist.prob([.1, .2, 1.2]).eval()
Ejemplo n.º 18
0
 def testKumaraswamyCdf(self):
   with self.test_session():
     shape = (30, 40, 50)
     for dt in (np.float32, np.float64):
       a = 10. * np.random.random(shape).astype(dt)
       b = 10. * np.random.random(shape).astype(dt)
       x = np.random.random(shape).astype(dt)
       actual = kumaraswamy_lib.Kumaraswamy(a, b).cdf(x).eval()
       self.assertAllEqual(np.ones(shape, dtype=np.bool), 0. <= x)
       self.assertAllEqual(np.ones(shape, dtype=np.bool), 1. >= x)
       if not stats:
         return
       self.assertAllClose(
           _kumaraswamy_cdf(a, b, x), actual, rtol=1e-4, atol=0)
 def testKumaraswamySampleMultidimensional(self):
     with self.test_session():
         a = np.random.rand(3, 2, 2).astype(np.float32)
         b = np.random.rand(3, 2, 2).astype(np.float32)
         kumaraswamy = kumaraswamy_lib.Kumaraswamy(a, b)
         n = constant_op.constant(100000)
         samples = kumaraswamy.sample(n)
         sample_values = samples.eval()
         self.assertEqual(sample_values.shape, (100000, 3, 2, 2))
         self.assertFalse(np.any(sample_values < 0.0))
         if not stats:
             return
         self.assertAllClose(sample_values[:, 1, :].mean(axis=0),
                             _kumaraswamy_moment(a, b, 1)[1, :],
                             atol=1e-1)