Ejemplo n.º 1
0
def construct_ellreg_v4_resnet(images, is_training):
    batch_norm_params = {
        'is_training': is_training,
        'decay': 0.8,
        'updates_collections': None,
        'center': True,
        'scale': True,
        'trainable': True
    }
    input_imgs = tf.map_fn(lambda by_batch: concat_xygrad_2d(by_batch), images)
    mynet, _ = resnet_v2.resnet_v2_200(input_imgs,
                                       None,
                                       is_training=is_training)
    features = tf.reshape(mynet, [-1, 2048])
    with slim.arg_scope([slim.fully_connected],
                        activation_fn=tf.nn.relu,
                        weights_initializer=tf.truncated_normal_initializer(
                            0.0, 0.01),
                        weights_regularizer=slim.l2_regularizer(0.0005),
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_params):
        mynet = slim.fully_connected(features,
                                     6,
                                     activation_fn=None,
                                     normalizer_fn=None,
                                     normalizer_params=None,
                                     scope='outlayer')
    return mynet, features
Ejemplo n.º 2
0
    def __restore_model(self):
        with tf.device(self._Graph__device):
            with self.__sess.as_default():
                with self._Graph__graph.as_default():
                    self.images = tf.placeholder(
                        shape=[None, config.IMAGE_H, config.IMAGE_W, 1],
                        dtype=tf.float32)

                    with slim.arg_scope(resnet_utils.resnet_arg_scope()):
                        self.logits, _ = resnet_v2.resnet_v2_200(
                            self.images, config.NUM_CLASSES)
                        self.net = tf.squeeze(self.logits)
                        self.probs = tf.nn.softmax(self.net)
                        self.top_5_values, self.top_5_idx = tf.nn.top_k(
                            self.probs, 5)

                    # Restore the moving average version of the learned variables for eval.
                    variable_averages = tf.train.ExponentialMovingAverage(
                        config.MOVING_AVERAGE_DECAY)
                    variables_to_restore = variable_averages.variables_to_restore(
                    )
                    self.__saver_cls = tf.train.Saver(variables_to_restore)
                    print("All variables are loaded!")
                    # print("Meta-Graph Restored.")

                    ckpt = tf.train.get_checkpoint_state(
                        self._Graph__model_ckpt)
                    if ckpt and ckpt.model_checkpoint_path:
                        # Restores from checkpoint
                        self.__saver_cls.restore(self.__sess,
                                                 ckpt.model_checkpoint_path)
                        gbl_step = ckpt.model_checkpoint_path.split(
                            '/')[-1].split('-')[-1]
                        print("Model loaded successfully")

                    self._Graph__graph = tf.get_default_graph()
def model_fn(model_name, batch_size):
    if model_name == "vgg19":
        from tensorflow.contrib.slim.nets import vgg
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        output, _ = vgg.vgg_19(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "resnet200":
        from tensorflow.contrib.slim.nets import resnet_v2
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1, 1, 1000))
        output, _ = resnet_v2.resnet_v2_200(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "resnet101":
        from tensorflow.contrib.slim.nets import resnet_v2
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1, 1, 1000))
        output, _ = resnet_v2.resnet_v2_101(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "resnet152":
        from tensorflow.contrib.slim.nets import resnet_v2
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1, 1, 1000))
        output, _ = resnet_v2.resnet_v2_152(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "nasnet_cifar":
        from tensorflow.contrib.slim.nets import nasnet
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        output, _ = nasnet.build_nasnet_cifar(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)
    elif model_name == "mobile_net":
        from tensorflow.contrib.slim.nets import mobilenet_v2
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        output, _ = mobilenet_v2.mobilenet(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "inceptionv3":
        from tensorflow.contrib.slim.nets import inception_v3
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        output, _ = inception_v3.inception_v3(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name == "transformer":
        import modeltransformer.transformer as transf
        from modeltransformer.data import DatasetManager
        dm = DatasetManager("wmt14")
        dm.maybe_download_data_files()
        dm.load_vocab()
        transformer = transf.Transformer(
            num_heads=8,
            d_model=512,
            d_ff=2048,
            model_name=model_name,
            tf_sess_config=dict(allow_soft_placement=True))
        train_params = dict(
            learning_rate=1e-4,
            batch_size=batch_size,
            seq_len=10,
            max_steps=300000,
        )
        transformer.build_model("wmt14", dm.source_id2word, dm.target_id2word,
                                0, **train_params)
        loss = transformer._loss

    elif model_name == "bert":
        from bert.runsquad import new_model_fn_builder
        import modeling
        bert_config = modeling.BertConfig.from_json_file(
            "bert/bert_large/bert_config.json")
        model = new_model_fn_builder(bert_config)
        features = {}
        features["input_ids"] = tf.cast(
            100 * tf.placeholder(tf.float32, shape=(batch_size, 128)),
            tf.int32)
        features["input_mask"] = tf.cast(
            100 * tf.placeholder(tf.float32, shape=(batch_size, 128)),
            tf.int32)
        features["segment_ids"] = tf.cast(
            100 * tf.placeholder(tf.float32, shape=(batch_size, 128)),
            tf.int32)
        features["start_positions"] = tf.cast(
            100 * tf.placeholder(tf.float32, shape=(batch_size, )), tf.int32)
        features["end_positions"] = tf.cast(
            100 * tf.placeholder(tf.float32, shape=(batch_size, )), tf.int32)
        loss = model(features)
    elif model_name == "small":
        slim = tf.contrib.slim
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        v = tf.get_variable(name="large_variable",
                            shape=(3000, 224, 224, 3),
                            trainable=True)
        x = tf.slice(v, [0, 0, 0, 0], tf.shape(x), name="large_slice")
        net = slim.max_pool2d(x, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5], trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5], trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5], trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.flatten(net)
        net = slim.fully_connected(net,
                                   1024,
                                   activation_fn=tf.nn.sigmoid,
                                   trainable=False)
        net = slim.fully_connected(net,
                                   1000,
                                   activation_fn=None,
                                   trainable=False)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=net)
    optimizer = tf.train.AdamOptimizer(learning_rate=0.2,
                                       beta1=0.9,
                                       beta2=0.98,
                                       epsilon=1e-9).minimize(
                                           tf.reduce_sum(loss))
    return optimizer
Ejemplo n.º 4
0
def model_fn(model_name, batch_size):
    if model_name=='vgg19':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1000))
        output, _ = vgg.vgg_19(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='resnet200':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1,1, 1000))
        output, _ = resnet_v2.resnet_v2_200(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='resnet101':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1,1, 1000))
        output, _ = resnet_v2.resnet_v2_101(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='resnet152':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1,1, 1000))
        output, _ = resnet_v2.resnet_v2_152(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='nasnet_cifar':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1000))
        output, _ = nasnet.build_nasnet_cifar(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='mobile_net':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size,1000))
        output, _ = mobilenet_v2.mobilenet(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='inceptionv3':
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        output, _ = inception.inception_v3(x, 1000)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=output)

    elif model_name=='transformer':
        dm = DatasetManager('wmt14')
        dm.maybe_download_data_files()
        dm.load_vocab()
        transformer = transf.Transformer(
            num_heads=8,
            d_model=512,
            d_ff=2048,
            model_name=model_name,
            tf_sess_config=dict(allow_soft_placement=True)
        )
        train_params = dict(
            learning_rate=1e-4,
            batch_size=batch_size,
            seq_len=10,
            max_steps=300000,
        )
        transformer.build_model('wmt14', dm.source_id2word, dm.target_id2word, 0,**train_params)
        loss = transformer._loss

    elif model_name=='bert':
        #bert_config = modeling.BertConfig.from_json_file('bert/bert_large/bert_config.json')
        bert_large_config_path = 'bert/pre-trained/large/cased_L-24_H-1024_A-16/bert_config.json'
        bert_config = modeling.BertConfig.from_json_file(bert_large_config_path)
        model = new_model_fn_builder(bert_config)
        features = {}
        features['input_ids']= tf.cast(100*tf.placeholder(tf.float32,shape=(batch_size,128)),tf.int32)
        features['input_mask'] = tf.cast(100*tf.placeholder(tf.float32,shape=(batch_size,128)),tf.int32)
        features['segment_ids']=tf.cast(100*tf.placeholder(tf.float32,shape=(batch_size,128)),tf.int32)
        features['start_positions'] = tf.cast(100*tf.placeholder(tf.float32,shape=(batch_size,)),tf.int32)
        features['end_positions'] =tf.cast(100*tf.placeholder(tf.float32,shape=(batch_size,)),tf.int32)
        loss = model(features)

    elif model_name == 'small':
        slim = tf.contrib.slim
        x = tf.placeholder(tf.float32, shape=(batch_size, 224, 224, 3))
        y = tf.placeholder(tf.float32, shape=(batch_size, 1000))
        v= tf.get_variable(name='large_variable',shape=(3000,224, 224, 3),trainable=True)
        x = tf.slice(v,[0,0,0,0],tf.shape(x),name='large_slice')
        net = slim.max_pool2d(x, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5],trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5],trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.conv2d(net, 128, [5, 5],trainable=False)
        net = slim.max_pool2d(net, [2, 2], 2)
        net = slim.flatten(net)
        net = slim.fully_connected(net, 1024, activation_fn=tf.nn.sigmoid,trainable=False)
        net = slim.fully_connected(net, 1000, activation_fn=None,trainable=False)
        loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=net)

    optimizer = tf.train.AdamOptimizer(learning_rate=0.2,
                            beta1=0.9, beta2=0.98, epsilon=1e-9).minimize(
                                                        tf.reduce_sum(loss))
    # TODO: Make lr, beta, epsilon value of parameter
    """
    if opt == 'Adam':
        optimizer = tf.train.AdamOptimizer(learning_rate=0.2,
                            beta1=0.9, beta2=0.98, epsilon=1e-9).minimize(
                                                        tf.reduce_sum(loss))
    elif opt == 'GradientDescent':
        optimizer = tf.train.GradientDescentOptimizer(
                                learning_rate=0.2).minimize(tf.reduce_sum(loss))
    """
    return optimizer