Ejemplo n.º 1
0
def tranferModel(nmt_base_model,
                 en_len,
                 fr_len,
                 MAX_VOCAB,
                 ENC_EMB_DIM,
                 DEC_EMB_DIM,
                 HID_DIM,
                 EMB_TRAIN=True,
                 GRU_LAYER=True,
                 is_trainable=False):
    fr_vocab = en_vocab = MAX_VOCAB
    en_inputs = Input(shape=(en_len, ), name='en_inputs')
    tr_en_emb_layer = Embedding(en_vocab + 1,
                                ENC_EMB_DIM,
                                input_length=en_len,
                                trainable=EMB_TRAIN,
                                name='en_emb')
    tr_en_emb = tr_en_emb_layer(en_inputs)
    tr_en_emb_masked = Masking(name='en_emb_mask')(tr_en_emb)  ###
    if GRU_LAYER:
        tr_en_gru = GRU(HID_DIM, return_state=True, dropout=0.5, name='en_gru')
        en_out, en_state = tr_en_gru(tr_en_emb_masked)
    else:
        tr_en_gru = LSTM(HID_DIM,
                         return_state=True,
                         dropout=0.5,
                         name='en_lstm')
        en_out, en_state, en_carry = tr_en_gru(tr_en_emb_masked)
    if not is_trainable:
        tr_en_emb_layer.trainable = False
        tr_en_gru.trainable = False

    de_inputs = Input(shape=(fr_len - 1, ), name='de_inputs')
    tr_de_emb_layer = Embedding(fr_vocab + 1,
                                DEC_EMB_DIM,
                                input_length=fr_len - 1,
                                trainable=EMB_TRAIN,
                                name='de_emb')
    tr_de_emb = tr_de_emb_layer(de_inputs)
    tr_de_emb_masked = Masking(name='de_emb_mask')(tr_de_emb)  ###
    if GRU_LAYER:
        tr_de_gru = GRU(HID_DIM,
                        return_sequences=True,
                        return_state=True,
                        dropout=0.5,
                        name='de_gru')
        de_out, _ = tr_de_gru(tr_de_emb_masked, initial_state=en_state)
    else:
        tr_de_gru = LSTM(HID_DIM,
                         return_sequences=True,
                         return_state=True,
                         dropout=0.5,
                         name='de_lstm')
        de_out, _, _ = tr_de_gru(tr_de_emb_masked,
                                 initial_state=[en_state, en_carry])
    tr_de_dense_0 = TimeDistributed(Dense(HID_DIM,
                                          activation='relu',
                                          name='de_dense_0'),
                                    name='de_timedense_0')  # fr_vocab
    tr_de_dense_0_output = tr_de_dense_0(de_out)  ###
    tr_de_dense_1 = Dense(fr_vocab, activation='softmax',
                          name='de_dense_1')  # trainable
    de_pred = TimeDistributed(tr_de_dense_1,
                              name='de_timedense_1')(tr_de_dense_0_output)
    if not is_trainable:
        tr_de_emb_layer.trainable = False
        tr_de_gru.trainable = False
        tr_de_dense_0.trainable = False
    # Define the new transfer learning model which accepts encoder/decoder inputs and outputs predictions
    nmt_emb = Model(inputs=[en_inputs, de_inputs],
                    outputs=de_pred,
                    name='transfer_learning_model')
    return nmt_emb, en_inputs, tr_en_emb_layer, tr_en_gru, en_state, \
                    de_inputs, tr_de_emb_layer, tr_de_gru, tr_de_dense_0, tr_de_dense_1
Ejemplo n.º 2
0
def new_lpcnet_model(rnn_units1=384,
                     rnn_units2=16,
                     nb_used_features=38,
                     training=False,
                     adaptation=False):
    pcm = Input(shape=(None, 3))
    feat = Input(shape=(None, nb_used_features))
    pitch = Input(shape=(None, 1))
    dec_feat = Input(shape=(None, 128))
    dec_state1 = Input(shape=(rnn_units1, ))
    dec_state2 = Input(shape=(rnn_units2, ))

    padding = 'valid' if training else 'same'
    fconv1 = Conv1D(128,
                    3,
                    padding=padding,
                    activation='tanh',
                    name='feature_conv1')
    fconv2 = Conv1D(128,
                    3,
                    padding=padding,
                    activation='tanh',
                    name='feature_conv2')

    embed = Embedding(256,
                      embed_size,
                      embeddings_initializer=PCMInit(),
                      name='embed_sig')
    cpcm = Reshape((-1, embed_size * 3))(embed(pcm))

    pembed = Embedding(256, 64, name='embed_pitch')
    cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])

    cfeat = fconv2(fconv1(cat_feat))

    fdense1 = Dense(128, activation='tanh', name='feature_dense1')
    fdense2 = Dense(128, activation='tanh', name='feature_dense2')

    cfeat = fdense2(fdense1(cfeat))

    rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1))

    rnn = GRU(rnn_units1,
              return_sequences=True,
              return_state=True,
              recurrent_activation="sigmoid",
              reset_after='true',
              name='gru_a')
    rnn2 = GRU(rnn_units2,
               return_sequences=True,
               return_state=True,
               recurrent_activation="sigmoid",
               reset_after='true',
               name='gru_b')

    rnn_in = Concatenate()([cpcm, rep(cfeat)])
    md = MDense(pcm_levels, activation='softmax', name='dual_fc')
    gru_out1, _ = rnn(rnn_in)
    gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
    ulaw_prob = md(gru_out2)

    if adaptation:
        rnn.trainable = False
        rnn2.trainable = False
        md.trainable = False
        embed.Trainable = False

    model = Model([pcm, feat, pitch], ulaw_prob)
    model.rnn_units1 = rnn_units1
    model.rnn_units2 = rnn_units2
    model.nb_used_features = nb_used_features
    model.frame_size = frame_size

    encoder = Model([feat, pitch], cfeat)

    dec_rnn_in = Concatenate()([cpcm, dec_feat])
    dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
    dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]),
                                initial_state=dec_state2)
    dec_ulaw_prob = md(dec_gru_out2)

    decoder = Model([pcm, dec_feat, dec_state1, dec_state2],
                    [dec_ulaw_prob, state1, state2])
    return model, encoder, decoder