Ejemplo n.º 1
0
class LSTM(Model):
    def __init__(self, opts):

        super(LSTM, self).__init__()
        self.cell = LSTMCell(opts.lstm_units)

        # Output layer.
        self.__out_layer = Dense(opts.output_size,
                                 activation=None,
                                 use_bias=True)

        # Interface layer.
        self.__interface = Dense(opts.interface_size,
                                 activation=None,
                                 use_bias=True)

    def __call__(self, inputs, state):

        hidden, state = self.cell(inputs, state)

        ctrl_output = {
            'output': self.__out_layer(hidden),
            'interface': self.__interface(hidden)
        }

        return ctrl_output, state

    def initialize(self, batch_size):

        return self.cell.get_initial_state(batch_size=batch_size,
                                           dtype=tf.float32)
Ejemplo n.º 2
0
def test_lstm_cell():
    n_inputs = 3
    n_units = 4
    batch_size = 1
    inputs = tx.Input(n_units=n_inputs)

    lstm0 = tx.LSTMCell(
        inputs,
        n_units,
        activation=tf.tanh,
        gate_activation=tf.sigmoid,
        forget_bias_init=tf.initializers.ones(),
    )

    lstm1 = LSTMCell(n_units,
                     activation='tanh',
                     recurrent_activation='sigmoid',
                     unit_forget_bias=True,
                     implementation=2)

    state0 = [s() for s in lstm0.previous_state]
    #  get_initial_state from keras returns either a tuple or a single
    #  state see `test_rnn_cell`, but the __call__ API requires an iterable
    state1 = lstm1.get_initial_state(inputs, batch_size=1)

    assert tx.tensor_equal(state1, state0)

    inputs.value = tf.ones([batch_size, n_inputs])
    res1 = lstm1(inputs, state0)
    res1_ = lstm1(inputs, state0)

    for r1, r2 in zip(res1, res1_):
        assert tx.tensor_equal(r1, r2)

    # the only difference is that keras kernels are fused together
    kernel = tf.concat([w.weights.value() for w in lstm0.layer_state.w],
                       axis=-1)
    w_i, _, _, _ = tf.split(kernel, 4, axis=1)
    assert tx.tensor_equal(w_i, lstm0.w[0].weights.value())

    recurrent_kernel = tf.concat([u.weights for u in lstm0.layer_state.u],
                                 axis=-1)
    bias = tf.concat([w.bias for w in lstm0.layer_state.w], axis=-1)

    assert tx.tensor_equal(tf.shape(kernel), tf.shape(lstm1.kernel))
    assert tx.tensor_equal(tf.shape(recurrent_kernel),
                           tf.shape(lstm1.recurrent_kernel))
    assert tx.tensor_equal(tf.shape(bias), tf.shape(lstm1.bias))

    lstm1.kernel = kernel
    lstm1.recurrent_kernel = recurrent_kernel
    lstm1.bias = bias

    res2 = lstm1(inputs, state0)
    for i in range(len(res1)):
        assert not tx.tensor_equal(res1[i], res2[i])
    res0 = lstm0()
    assert tx.tensor_equal(res0, res2[0])
Ejemplo n.º 3
0
class Encoder(object):
    def __init__(self, n_neurons=128, batch_size=4, seq_length=10):
        # パラメタ設定
        self.n_neurons = n_neurons
        self.batch_size = batch_size
        self.seq_length = seq_length

        # 再帰セル定義
        self.enc_rec_cell = LSTMCell(self.n_neurons)

    # ネットワーク定義
    # Decoderとの対比から、(LSTMレイヤでなく)敢えて明示的に
    # Loopで記載
    def build_model(self, inputs):

        # Bi-directional LSTMレイヤを挿入
        inputs = Bidirectional(LSTM(self.n_neurons, return_sequences=True),
                               merge_mode='concat')(inputs)

        input_list = tf.transpose(inputs, [1, 0, 2])

        enc_outputs, enc_states = [], []
        state = self._get_initial_state()

        for input in tf.unstack(input_list, axis=0):
            # 再帰ネットワークへの入出力
            output, state = self.enc_rec_cell(input, state)

            enc_outputs.append(output)
            enc_states.append(state)

        # 出力の蓄積
        enc_outputs = tf.stack(enc_outputs, axis=0)
        enc_outputs = tf.transpose(enc_outputs, [1, 0, 2])

        enc_state = enc_states[-1]

        return enc_outputs, enc_state

    def _get_initial_state(self):

        state = self.enc_rec_cell.get_initial_state(inputs=None,
                                                    batch_size=self.batch_size,
                                                    dtype=tf.float32)
        return state
Ejemplo n.º 4
0
class Encoder(object):
    def __init__(self, n_neurons=128, batch_size=4, user=6):
        """

        Actor Encoder class

        Args:
            n_neurons: int
                Hidden layer of LSTM

            user: int
                Num of user

        Outputs:
            enc_outputs: 3D tensor [batch, user, n_neurons]
                Whole sequence outputs


            enc_state: 1D list [tensor, tensor]

                enc_state[0]: 2D tensor [batch, n_neurons]
                    Final memory state

                enc_state[1]: 2D tensor [batch, n_neurons]
                    Final carry state
        """

        self.n_neurons = n_neurons
        self.batch_size = batch_size
        self.user = user

        # Define Recursive cell
        self.enc_rec_cell = LSTMCell(self.n_neurons)

    def build_model(self, inputs):

        # Insert Bi-directional LSTM layer
        inputs = Bidirectional(LSTM(self.n_neurons, return_sequences=True),
                               merge_mode='concat')(inputs)

        # Reshape [user, batch_size, n_neurons*2]
        input_list = tf.transpose(inputs, [1, 0, 2])

        # Setting inputs and batch_size of LSTMCell
        state = self._get_initial_state()
        enc_outputs, enc_states = [], []

        for input in tf.unstack(input_list, axis=0):
            # input is time step of sequence with shape of [batch, n_neurons*2]
            output, state = self.enc_rec_cell(input, state)

            enc_outputs.append(output)
            enc_states.append(state)

        # Concat & transpose
        enc_outputs = tf.stack(enc_outputs, axis=0)
        enc_outputs = tf.transpose(enc_outputs, [1, 0, 2])
        enc_state = enc_states[-1]

        return enc_outputs, enc_state

    def _get_initial_state(self):
        state = self.enc_rec_cell.get_initial_state(inputs=None,
                                                    batch_size=self.batch_size,
                                                    dtype=tf.float32)
        return state