Ejemplo n.º 1
0
def get_gnet(n_ch, patch_height, patch_width):
    inputs = Input((n_ch, patch_height, patch_width))
    conv1 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(inputs)
    conv1 = Dropout(0.2)(conv1)
    conv1 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(conv1)
    up1 = UpSampling2D(size=(2, 2))(conv1)
    #
    conv2 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(up1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Convolution2D(16, 3, 3, activation='relu',
                          border_mode='same')(conv2)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv2)
    #
    conv3 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(pool1)
    conv3 = Dropout(0.2)(conv3)
    conv3 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(conv3)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv3)
    #
    conv4 = Convolution2D(64, 3, 3, activation='relu',
                          border_mode='same')(pool2)
    conv4 = Dropout(0.2)(conv4)
    conv4 = Convolution2D(64, 3, 3, activation='relu',
                          border_mode='same')(conv4)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv4)
    #
    conv5 = Convolution2D(128, 3, 3, activation='relu',
                          border_mode='same')(pool3)
    conv5 = Dropout(0.2)(conv5)
    conv5 = Convolution2D(128, 3, 3, activation='relu',
                          border_mode='same')(conv5)
    #
    up2 = merge([UpSampling2D(size=(2, 2))(conv5), conv4],
                mode='concat',
                concat_axis=1)
    conv6 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up2)
    conv6 = Dropout(0.2)(conv6)
    conv6 = Convolution2D(64, 3, 3, activation='relu',
                          border_mode='same')(conv6)
    #
    up3 = merge([UpSampling2D(size=(2, 2))(conv6), conv3],
                mode='concat',
                concat_axis=1)
    conv7 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up3)
    conv7 = Dropout(0.2)(conv7)
    conv7 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(conv7)
    #
    up4 = merge([UpSampling2D(size=(2, 2))(conv7), conv2],
                mode='concat',
                concat_axis=1)
    conv8 = Convolution2D(16, 3, 3, activation='relu', border_mode='same')(up4)
    conv8 = Dropout(0.2)(conv8)
    conv8 = Convolution2D(16, 3, 3, activation='relu',
                          border_mode='same')(conv8)
    #
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv8)
    conv9 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(pool4)
    conv9 = Dropout(0.2)(conv9)
    conv9 = Convolution2D(32, 3, 3, activation='relu',
                          border_mode='same')(conv9)
    #
    conv10 = Convolution2D(2, 1, 1, activation='relu',
                           border_mode='same')(conv9)
    conv10 = Reshape((2, patch_height * patch_width))(conv10)
    conv10 = Permute((2, 1))(conv10)
    ############
    conv10 = Activation('softmax')(conv10)

    model = Model(input=inputs, output=conv10)

    # sgd = SGD(lr=0.01, decay=1e-6, momentum=0.3, nesterov=False)
    model.compile(optimizer='sgd',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
Ejemplo n.º 2
0
def HRNetResidual(input_shape=(128, 128, 3), num_keypoints=20):
    # stem
    inputs = Input(shape=input_shape, name='image')
    x1 = stem(inputs, 64)
    x1 = Conv2D(64 * 4, 1, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    for block in range(4):
        x1 = bottleneck(x1)

    # stage I
    x1 = Conv2D(32, 3, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    x1 = Activation('relu')(x1)
    x2 = transition_block(x1, 2)

    # stage II
    for block in range(4):
        x1 = residual_block(x1, 32)
        x2 = residual_block(x2, 64)
    x1, x2 = fuse([x1, x2])
    x3 = transition_block(x2, 2)

    # stage III
    for module in range(4):
        for block in range(4):
            x1 = residual_block(x1, 32)
            x2 = residual_block(x2, 64)
            x3 = residual_block(x3, 128)
        x1, x2, x3 = fuse([x1, x2, x3])
    x4 = transition_block(x3, 2)

    # stage IV
    for module in range(3):
        for block in range(4):
            x1 = residual_block(x1, 32)
            x2 = residual_block(x2, 64)
            x3 = residual_block(x3, 128)
            x4 = residual_block(x4, 256)
        x1, x2, x3, x4 = fuse([x1, x2, x3, x4])

    # head
    x2 = UpSampling2D(size=(2, 2))(x2)
    x3 = UpSampling2D(size=(4, 4))(x3)
    x4 = UpSampling2D(size=(8, 8))(x4)
    x = Concatenate()([x1, x2, x3, x4])
    x = Conv2D(480, 1)(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(num_keypoints, 1)(x)

    # extra
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = UpSampling2D(size=(4, 4), interpolation='bilinear')(x)
    x = Permute([3, 1, 2])(x)
    x = Reshape([num_keypoints, input_shape[0] * input_shape[1]])(x)
    x = Activation('softmax')(x)
    x = Reshape([num_keypoints, input_shape[0], input_shape[1]])(x)
    outputs = ExpectedValue2D(name='keypoints')(x)
    model = Model(inputs, outputs, name='hrnet-residual')
    return model
Ejemplo n.º 3
0
 def forward(self, x):
     x = Permute((2, 1, 3))(x)
     x = self.pad(x)
     return Permute((2, 1, 3))(x)
Ejemplo n.º 4
0
    def __init__(self, sr=44100):
        
        """
        Build the CNN model and load the weights

        Parameters
        ----------
        model_capacity : 'tiny', 'small', 'medium', 'large', or 'full'
            String specifying the model capacity, which determines the model's
            capacity multiplier to 4 (tiny), 8 (small), 16 (medium), 24 (large),
            or 32 (full). 'full' uses the model size specified in the paper,
            and the others use a reduced number of filters in each convolutional
            layer, resulting in a smaller model that is faster to evaluate at the
            cost of slightly reduced pitch estimation accuracy.

        Returns
        -------
        model : tensorflow.keras.models.Model
            The pre-trained keras model loaded in memory
        """
        from tensorflow.keras.layers import Input, Reshape, Conv2D, BatchNormalization
        from tensorflow.keras.layers import MaxPool2D, Dropout, Permute, Flatten, Dense
        from tensorflow.keras.models import Model
        
        models = {
        'tiny': None,
        'small': None,
        'medium': None,
        'large': None,
        'full': None
        }

        # the model is trained on 16kHz audio
        #model_srate = 16000
        self.sr = sr

        #if models[model_capacity] is None:
        capacity_multiplier = 32 #{
#                 'tiny': 4, 'small': 8, 'medium': 16, 'large': 24, 'full': 32
#             }[model_capacity]

        layers = [1, 2, 3, 4, 5, 6]
        filters = [n * capacity_multiplier for n in [32, 4, 4, 4, 8, 16]]
        widths = [512, 64, 64, 64, 64, 64]
        strides = [(4, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]

        x = Input(shape=(1024,), name='input', dtype='float32')
        y = Reshape(target_shape=(1024, 1, 1), name='input-reshape')(x)

        for l, f, w, s in zip(layers, filters, widths, strides):
            y = Conv2D(f, (w, 1), strides=s, padding='same',
                       activation='relu', name="conv%d" % l)(y)
            y = BatchNormalization(name="conv%d-BN" % l)(y)
            y = MaxPool2D(pool_size=(2, 1), strides=None, padding='valid',
                          name="conv%d-maxpool" % l)(y)
            y = Dropout(0.25, name="conv%d-dropout" % l)(y)

        y = Permute((2, 1, 3), name="transpose")(y)
        y = Flatten(name="flatten")(y)
        y = Dense(360, activation='sigmoid', name="classifier")(y)

        self.model = Model(inputs=x, outputs=y)

        filename = "model-full.h5"
        self.model.load_weights(filename)
        self.model.compile('adam', 'binary_crossentropy')
Ejemplo n.º 5
0
    def build_model(self):
        """Helper method for creating the model"""
        vocab = set()
        for story, q, answer in self.train_stories + self.test_stories:
            vocab |= set(story + q + [answer])
        vocab = sorted(vocab)

        # Reserve 0 for masking via pad_sequences
        vocab_size = len(vocab) + 1
        story_maxlen = max(
            len(x) for x, _, _ in self.train_stories + self.test_stories)
        query_maxlen = max(
            len(x) for _, x, _ in self.train_stories + self.test_stories)

        word_idx = {c: i + 1 for i, c in enumerate(vocab)}
        self.inputs_train, self.queries_train, self.answers_train = vectorize_stories(
            word_idx, story_maxlen, query_maxlen, self.train_stories)
        self.inputs_test, self.queries_test, self.answers_test = vectorize_stories(
            word_idx, story_maxlen, query_maxlen, self.test_stories)

        # placeholders
        input_sequence = Input((story_maxlen, ))
        question = Input((query_maxlen, ))

        # encoders
        # embed the input sequence into a sequence of vectors
        input_encoder_m = Sequential()
        input_encoder_m.add(Embedding(input_dim=vocab_size, output_dim=64))
        input_encoder_m.add(Dropout(self.config.get("dropout", 0.3)))
        # output: (samples, story_maxlen, embedding_dim)

        # embed the input into a sequence of vectors of size query_maxlen
        input_encoder_c = Sequential()
        input_encoder_c.add(
            Embedding(input_dim=vocab_size, output_dim=query_maxlen))
        input_encoder_c.add(Dropout(self.config.get("dropout", 0.3)))
        # output: (samples, story_maxlen, query_maxlen)

        # embed the question into a sequence of vectors
        question_encoder = Sequential()
        question_encoder.add(
            Embedding(input_dim=vocab_size,
                      output_dim=64,
                      input_length=query_maxlen))
        question_encoder.add(Dropout(self.config.get("dropout", 0.3)))
        # output: (samples, query_maxlen, embedding_dim)

        # encode input sequence and questions (which are indices)
        # to sequences of dense vectors
        input_encoded_m = input_encoder_m(input_sequence)
        input_encoded_c = input_encoder_c(input_sequence)
        question_encoded = question_encoder(question)

        # compute a "match" between the first input vector sequence
        # and the question vector sequence
        # shape: `(samples, story_maxlen, query_maxlen)`
        match = dot([input_encoded_m, question_encoded], axes=(2, 2))
        match = Activation("softmax")(match)

        # add the match matrix with the second input vector sequence
        response = add([match, input_encoded_c
                        ])  # (samples, story_maxlen, query_maxlen)
        response = Permute(
            (2, 1))(response)  # (samples, query_maxlen, story_maxlen)

        # concatenate the match matrix with the question vector sequence
        answer = concatenate([response, question_encoded])

        # the original paper uses a matrix multiplication.
        # we choose to use a RNN instead.
        answer = LSTM(32)(answer)  # (samples, 32)

        # one regularization layer -- more would probably be needed.
        answer = Dropout(self.config.get("dropout", 0.3))(answer)
        answer = Dense(vocab_size)(answer)  # (samples, vocab_size)
        # we output a probability distribution over the vocabulary
        answer = Activation("softmax")(answer)

        # build the final model
        model = Model([input_sequence, question], answer)
        return model
Ejemplo n.º 6
0
def STSnet(n_clss, ch_rows=4, ch_cols=5, samples=128, kernLength=None, F1=4,
           D=2, F2=8, norm_rate=0.25, dropoutRate=0.25, dropoutType='Dropout'):
    """Keras Implementation of STSnet.
    # Arguments:

        n_clss: int, number of classes to clasify (default 4)
        ch_rows: number of rows of 2D spatial distribution (default 4)
        ch_cols: number of columns of 2D spatial distribution (default 5)
        samples: number of epoch samples form each trial (default 128)
        dropoutRate: dropout value (default 0.25)
        kernLength: kernel length value in Conv2D layer(default None)
        F1: number of filters in Conv2D layer (default 4)
        D: deep multiplier to DepthwiseConv2D (default 2)
        F2: number of filters to each kernel from SeparableConv2D (default 8)
        norm_rate: maximum norm for the incoming dense weights(default 0.25)
        dropoutType: 'SpatialDropout2D' or 'Dropout' (defautl 'Dropout')
    """

    if dropoutType == 'SpatialDropout2D':
        dropoutType = SpatialDropout2D
    elif dropoutType == 'Dropout':
        dropoutType = Dropout
    else:
        raise ValueError('dropoutType must be one of SpatialDropout2D '
                         'or Dropout, passed as a string.')
    if kernLength is None:
        kernLength = np.int(samples/2)
    print('kernel_length', kernLength)
    # -------------------------------------------------------------------------
    # DEPTWISE 2D MODEL
    DW_in = Input(shape=(F1, ch_rows, ch_cols))
    DW_out = DepthwiseConv2D((ch_rows, ch_cols), use_bias=False,
                             depth_multiplier=D,
                             depthwise_constraint=max_norm(1.))(DW_in)
    DW = Model(inputs=DW_in, outputs=DW_out)
    # -------------------------------------------------------------------------
    input1 = Input(shape=(ch_rows * ch_cols, samples))
    # -------------------------------------------------------------------------
    reshape1 = Reshape(target_shape=(1, ch_rows * ch_cols, samples))(input1)

    block1 = Conv2D(F1, (1, kernLength), padding='same',
                    input_shape=(1, ch_rows*ch_cols, samples),
                    use_bias=False)(reshape1)
    block1 = BatchNormalization(axis=1)(block1)
    reshape2 = Reshape(target_shape=(F1, ch_rows, ch_cols, samples))(block1)
    perm_dims1 = 4, 1, 2, 3
    perm1 = Permute(perm_dims1)(reshape2)
    block1 = TimeDistributed(DW)(perm1)
    perm_dims2 = 2, 3, 4, 1
    perm2 = Permute(perm_dims2)(block1)
    reshape3 = Reshape(target_shape=(F1*D, 1, samples))(perm2)
    block1 = BatchNormalization(axis=1)(reshape3)
    block1 = Activation('elu')(block1)
    block1 = AveragePooling2D((1, np.int(kernLength/16)))(block1)
    block1 = dropoutType(dropoutRate)(block1)

    block2 = SeparableConv2D(F2, (1, 16),
                             use_bias=False, padding='same')(block1)
    block2 = BatchNormalization(axis=1)(block2)
    block2 = Activation('elu')(block2)
    block2 = AveragePooling2D((1, np.int(kernLength/8)))(block2)
    block2 = dropoutType(dropoutRate)(block2)

    flatten = Flatten(name='flatten')(block2)

    dense = Dense(n_clss, name='dense',
                  kernel_constraint=max_norm(norm_rate))(flatten)
    softmax = Activation('softmax', name='softmax')(dense)

    return Model(inputs=input1, outputs=softmax)
Ejemplo n.º 7
0
    def _crnn_layers(self, input_shape, output_shape):
        channel_axis = 3

        melgram_input = Input(shape=input_shape, dtype="float32")

        # Input block
        padding = self.network_input_width - input_shape[1]
        left_pad = int(padding / 2)
        if padding % 2:
            right_pad = left_pad + 1
        else:
            right_pad = left_pad
        input_padding = ((0, 0), (left_pad, right_pad))
        hidden = ZeroPadding2D(padding=input_padding)(melgram_input)

        # Conv block 1
        hidden = Conv2D(64, (3, 3), padding=self.padding, name='conv1')(hidden)
        hidden = BatchNormalization(axis=channel_axis, name='bn1')(hidden)
        hidden = ELU()(hidden)
        hidden = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),
                              name='pool1')(hidden)
        hidden = Dropout(0.1, name='dropout1')(hidden)

        # Conv block 2
        hidden = Conv2D(128, (3, 3), padding=self.padding,
                        name='conv2')(hidden)
        hidden = BatchNormalization(axis=channel_axis, name='bn2')(hidden)
        hidden = ELU()(hidden)
        hidden = MaxPooling2D(pool_size=(3, 3), strides=(3, 3),
                              name='pool2')(hidden)
        hidden = Dropout(0.1, name='dropout2')(hidden)

        # Conv block 3
        hidden = Conv2D(128, (3, 3), padding=self.padding,
                        name='conv3')(hidden)
        hidden = BatchNormalization(axis=channel_axis, name='bn3')(hidden)
        hidden = ELU()(hidden)
        hidden = MaxPooling2D(pool_size=(4, 4), strides=(4, 4),
                              name='pool3')(hidden)
        hidden = Dropout(0.1, name='dropout3')(hidden)

        # Conv block 4
        hidden = Conv2D(128, (3, 3), padding=self.padding,
                        name='conv4')(hidden)
        hidden = BatchNormalization(axis=channel_axis, name='bn4')(hidden)
        hidden = ELU()(hidden)
        hidden = MaxPooling2D(pool_size=(4, 4), strides=(4, 4),
                              name='pool4')(hidden)
        hidden = Dropout(0.1, name='dropout4')(hidden)

        # reshaping
        hidden = Reshape((15, 128))(hidden)

        # GRU block 1, 2, output
        embed_size = 32
        hidden = GRU(embed_size, return_sequences=True, name='gru1')(hidden)
        hidden = GRU(embed_size, return_sequences=self.attention,
                     name='gru2')(hidden)

        if self.attention:
            attention = Dense(1)(hidden)
            attention = Flatten()(attention)
            attention_act = Activation("softmax")(attention)
            attention = RepeatVector(embed_size)(attention_act)
            attention = Permute((2, 1))(attention)

            merged = Multiply()([hidden, attention])
            hidden = Lambda(lambda xin: K.sum(xin, axis=1))(merged)

        if self.output_dropout:
            hidden = Dropout(self.output_dropout)(hidden)
        output = Dense(output_shape, activation='sigmoid',
                       name='crnn_output')(hidden)

        return melgram_input, output
Ejemplo n.º 8
0
    def bottleneck_encoder(self, tensor, nfilters, downsampling=False, dilated=False, asymmetric=False, normal=False,
                           drate=0.1,
                           name=''):

        """
        Encoder

        :param tensor: input tensor
        :param nfilters: Number of filters
        :param downsampling: Downsample the feature map
        :param dilated: determines  if ther should be dilated convultion
        :param asymmetric:  Determines if there should be asymmetric convolution
        :param normal:  enables 3x3 convolution on feature map
        :param drate: rate of dilation
        :param name: the name for the weight variable.
        :return: encoder output
        """
        y = tensor
        skip = tensor
        stride = 1
        ksize = 1

        # Filters operating on downsampled images have a bigger receptive field and hence gathers more context.
        if downsampling:
            stride = 2
            ksize = 2
            skip = MaxPooling2D(pool_size=(2, 2), name=f'max_pool_{name}')(skip)
            skip = Permute((1, 3, 2), name=f'permute_1_{name}')(skip)  # (B, H, W, C) -> (B, H, C, W)
            ch_pad = nfilters - tf.compat.v2.keras.backend.int_shape(tensor)[-1]
            skip = ZeroPadding2D(padding=((0, 0), (0, ch_pad)), name=f'zeropadding_{name}')(skip)
            skip = Permute((1, 3, 2), name=f'permute_2_{name}')(skip)  # (B, H, C, W) -> (B, H, W, C)

        y = Conv2D(filters=nfilters // 4, kernel_size=(ksize, ksize), kernel_initializer='he_normal',
                   strides=(stride, stride), padding='same', use_bias=False, name=f'1x1_conv_{name}')(y)
        y = BatchNormalization(momentum=0.1, name=f'bn_1x1_{name}')(y)
        y = PReLU(shared_axes=[1, 2], name=f'prelu_1x1_{name}')(y)

        if normal:
            # deconv with 3x3 filter
            y = Conv2D(filters=nfilters // 4, kernel_size=(3, 3), kernel_initializer='he_normal', padding='same',
                       name=f'3x3_conv_{name}')(y)
        elif asymmetric:
            # decompose 5x5 convolution to two asymmetric layers as 5x1 and 1x5
            y = Conv2D(filters=nfilters // 4, kernel_size=(5, 1), kernel_initializer='he_normal', padding='same',
                       use_bias=False, name=f'5x1_conv_{name}')(y)
            y = Conv2D(filters=nfilters // 4, kernel_size=(1, 5), kernel_initializer='he_normal', padding='same',
                       name=f'1x5_conv_{name}')(y)
        elif dilated:
            y = Conv2D(filters=nfilters // 4, kernel_size=(3, 3), kernel_initializer='he_normal',
                       dilation_rate=(dilated, dilated), padding='same', name=f'dilated_conv_{name}')(y)
        y = BatchNormalization(momentum=0.1, name=f'bn_main_{name}')(y)
        y = PReLU(shared_axes=[1, 2], name=f'prelu_{name}')(y)

        y = Conv2D(filters=nfilters, kernel_size=(1, 1), kernel_initializer='he_normal', use_bias=False,
                   name=f'final_1x1_{name}')(y)
        y = BatchNormalization(momentum=0.1, name=f'bn_final_{name}')(y)
        y = SpatialDropout2D(rate=drate, name=f'spatial_dropout_final_{name}')(y)

        y = Add(name=f'add_{name}')([y, skip])
        y = PReLU(shared_axes=[1, 2], name=f'prelu_out_{name}')(y)

        return y
Ejemplo n.º 9
0
def HRNetResidual(input_shape=(128, 128, 3), num_keypoints=20):
    """Instantiates HRNET Residual model

    # Arguments
        input_shape: List of three elements e.g. ''(H, W, 3)''
        num_keypoints: Int.

    # Returns
        Tensorflow-Keras model.

    # References
       -[High-Resolution Representations for Labeling Pixels
            and Regions](https://arxiv.org/pdf/1904.04514.pdf)
    """

    # stem
    inputs = Input(shape=input_shape, name='image')
    x1 = stem(inputs, 64)
    x1 = Conv2D(64 * 4, 1, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    for block in range(4):
        x1 = bottleneck(x1)

    # stage I
    x1 = Conv2D(32, 3, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    x1 = Activation('relu')(x1)
    x2 = transition_block(x1, 2)

    # stage II
    for block in range(4):
        x1 = residual_block(x1, 32)
        x2 = residual_block(x2, 64)
    x1, x2 = fuse([x1, x2])
    x3 = transition_block(x2, 2)

    # stage III
    for module in range(4):
        for block in range(4):
            x1 = residual_block(x1, 32)
            x2 = residual_block(x2, 64)
            x3 = residual_block(x3, 128)
        x1, x2, x3 = fuse([x1, x2, x3])
    x4 = transition_block(x3, 2)

    # stage IV
    for module in range(3):
        for block in range(4):
            x1 = residual_block(x1, 32)
            x2 = residual_block(x2, 64)
            x3 = residual_block(x3, 128)
            x4 = residual_block(x4, 256)
        x1, x2, x3, x4 = fuse([x1, x2, x3, x4])

    # head
    x2 = UpSampling2D(size=(2, 2))(x2)
    x3 = UpSampling2D(size=(4, 4))(x3)
    x4 = UpSampling2D(size=(8, 8))(x4)
    x = Concatenate()([x1, x2, x3, x4])
    x = Conv2D(480, 1)(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(num_keypoints, 1)(x)

    # extra
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = UpSampling2D(size=(4, 4), interpolation='bilinear')(x)
    x = Permute([3, 1, 2])(x)
    x = Reshape([num_keypoints, input_shape[0] * input_shape[1]])(x)
    x = Activation('softmax')(x)
    x = Reshape([num_keypoints, input_shape[0], input_shape[1]])(x)
    outputs = ExpectedValue2D(name='keypoints')(x)
    model = Model(inputs, outputs, name='hrnet-residual')
    return model
Ejemplo n.º 10
0
def interest_evolution(
    concat_behavior,
    deep_input_item,
    user_behavior_length,
    gru_type="GRU",
    use_neg=False,
    neg_concat_behavior=None,
    embedding_size=8,
    att_hidden_size=(64, 16),
    att_activation='sigmoid',
    att_weight_normalization=False,
):
    if gru_type not in ["GRU", "AIGRU", "AGRU", "AUGRU"]:
        raise ValueError("gru_type error ")
    aux_loss_1 = None

    rnn_outputs = DynamicGRU(embedding_size * 2,
                             return_sequence=True,
                             name="gru1")(
                                 [concat_behavior, user_behavior_length])

    if gru_type == "AUGRU" and use_neg:
        aux_loss_1 = auxiliary_loss(rnn_outputs[:, :-1, :],
                                    concat_behavior[:, 1:, :],
                                    neg_concat_behavior[:, 1:, :],
                                    tf.subtract(user_behavior_length, 1),
                                    stag="gru")  # [:, 1:]

    if gru_type == "GRU":
        rnn_outputs2 = DynamicGRU(embedding_size * 2,
                                  return_sequence=True,
                                  name="gru2")(
                                      [rnn_outputs, user_behavior_length])
        # attention_score = AttentionSequencePoolingLayer(hidden_size=att_hidden_size, activation=att_activation, weight_normalization=att_weight_normalization, return_score=True)([
        #     deep_input_item, rnn_outputs2, user_behavior_length])
        # outputs = Lambda(lambda x: tf.matmul(x[0], x[1]))(
        #     [attention_score, rnn_outputs2])
        # hist = outputs
        hist = AttentionSequencePoolingLayer(
            att_hidden_units=att_hidden_size,
            att_activation=att_activation,
            weight_normalization=att_weight_normalization,
            return_score=False)(
                [deep_input_item, rnn_outputs2, user_behavior_length])

    else:  # AIGRU AGRU AUGRU

        scores = AttentionSequencePoolingLayer(
            att_hidden_units=att_hidden_size,
            att_activation=att_activation,
            weight_normalization=att_weight_normalization,
            return_score=True)(
                [deep_input_item, rnn_outputs, user_behavior_length])

        if gru_type == "AIGRU":
            hist = multiply([rnn_outputs, Permute([2, 1])(scores)])
            final_state2 = DynamicGRU(
                embedding_size * 2,
                gru_type="GRU",
                return_sequence=False,
                name='gru2')([hist, user_behavior_length])
        else:  # AGRU AUGRU
            final_state2 = DynamicGRU(embedding_size * 2,
                                      gru_type=gru_type,
                                      return_sequence=False,
                                      name='gru2')([
                                          rnn_outputs, user_behavior_length,
                                          Permute([2, 1])(scores)
                                      ])
        hist = final_state2
    return hist, aux_loss_1
Ejemplo n.º 11
0
    def build_net(self, dev):
         with tf.variable_scope('a3c') and tf.device(dev):
            screenInput = Input(
                shape=(U.screen_channel(), self.ssize, self.ssize),
                name='screenInput',
            )

            permutedScreenInput = Permute((2,3,1))(screenInput)
            conv1 = Conv2D(16, kernel_size=5, strides=(1,1), padding='same',name='conv1')(permutedScreenInput)
            conv2 = Conv2D(32, kernel_size=3, strides=(1,1), padding='same',name='conv2')(conv1)

            infoInput = Input(
                shape=(self.isize,),
                name='infoInput',
            )

            customInput = Input(
                shape=(self.custom_input_size,),
                name='customInput',
            )

            nonSpatialInput = Concatenate(name='nonSpatialInputConcat')([infoInput, customInput])

            broadcasted = Lambda(self.broadcast,name='broadcasting')(nonSpatialInput)

            combinedSpatialNonSpatial = Concatenate(name='combinedConcat')([broadcasted, conv2])

            conv3 = Conv2D(1, kernel_size=1, strides=(1,1), padding='same',name='conv3')(combinedSpatialNonSpatial)

            flatConv3 = Flatten(name='flatConv3')(conv3)

            lstmInput = Lambda(self.expand_dims, name='lstmInput')(flatConv3)

            self.NUM_LSTM = 100

            hStateInput = Input(
                shape=(self.NUM_LSTM,),
                name='hStateInput'
            )

            cStateInput = Input(
                shape=(self.NUM_LSTM,),
                name='cStateInput'
            )

            lstm, hStates, cStates = LSTM(self.NUM_LSTM, return_state=True)(lstmInput, initial_state=[hStateInput, cStateInput])

            fc1 = Dense(256, activation='relu',name='dense1')(lstm)
            fc2 = Dense(1, activation='linear',name='fc2')(fc1)
            value = Lambda(self.Squeeze,name='value')(fc2)
            policy = Dense(self.isize, activation='softmax',name='policy')(fc1)


            broadcastLstm = Lambda(self.broadcast, name='breadcastLstm')(lstm)

            spatialLstm = Concatenate(name='spatialLstm')([conv3, broadcastLstm])

            conv4 = Conv2D(1,kernel_size=1, strides=(1,1), padding='same',name='conv4')(spatialLstm)
            flatConv4 = Flatten(name='flattenedConv3')(conv4)
            spatialPolicy = Softmax(name='spatialPolicy')(flatConv4)

            conv5 = Conv2D(1, kernel_size=1, strides=(1,1), padding='same',name='conv5')(spatialLstm)
            flatConv5 = Flatten(name='flattenedConv5')(conv5)
            bestRoach = Softmax(name='bestRoach')(flatConv5)

            self.model = Model(
                inputs=[screenInput, infoInput, customInput, hStateInput, cStateInput],
                outputs=[value, policy, spatialPolicy, hStates, cStates, bestRoach]
            )
            self.model._make_predict_function()
Ejemplo n.º 12
0
# encode input sequence and questions (which are indices)
# to sequences of dense vectors
input_encoded_m = input_encoder_m(input_sequence)
input_encoded_c = input_encoder_c(input_sequence)
question_encoded = question_encoder(question)

# compute a 'match' between the first input vector sequence
# and the question vector sequence
# shape: `(samples, story_maxlen, query_maxlen)`
match = dot([input_encoded_m, question_encoded], axes=(2, 2))
match = Activation('softmax')(match)

# add the match matrix with the second input vector sequence
response = add([match,
                input_encoded_c])  # (samples, story_maxlen, query_maxlen)
response = Permute((2, 1))(response)  # (samples, query_maxlen, story_maxlen)

# concatenate the match matrix with the question vector sequence
answer = concatenate([response, question_encoded])

# the original paper uses a matrix multiplication for this reduction step.
# we choose to use a RNN instead.
answer = LSTM(32)(answer)  # (samples, 32)

# one regularization layer -- more would probably be needed.
answer = Dropout(0.3)(answer)
answer = Dense(vocab_size)(answer)  # (samples, vocab_size)
# we output a probability distribution over the vocabulary
answer = Activation('softmax')(answer)

# build the final model
def cnn_line_lstm_ctc(input_shape, output_shape, **kwargs):
    image_height, image_width = input_shape
    output_length, num_classes = output_shape

    image_input = Input(shape=input_shape, name='image')
    y_true = Input(shape=(output_length, ), name='y_true')
    input_length = Input(shape=(1, ), name='input_length')
    label_length = Input(shape=(1, ), name='label_length')

    gpu_present = len(device_lib.list_local_devices()) > 1
    lstm_fn = CuDNNLSTM if gpu_present else LSTM

    ##### Your code below (Lab 3)
    image_reshaped = Reshape((image_height, image_width, 1))(image_input)
    # (image_height, image_width, 1)

    convnet_outputs = image_reshaped
    # convnet_outputs = Dropout(0.5)(convnet_outputs)
    convnet_outputs = Conv2D(16, 3, padding='SAME')(convnet_outputs)
    convnet_outputs = BatchNormalization()(convnet_outputs)
    convnet_outputs = LeakyReLU()(convnet_outputs)
    convnet_outputs = MaxPooling2D(2, 2)(convnet_outputs)

    # convnet_outputs = Dropout(0.5)(convnet_outputs)
    convnet_outputs = Conv2D(32, 3, padding='SAME')(convnet_outputs)
    convnet_outputs = BatchNormalization()(convnet_outputs)
    convnet_outputs = LeakyReLU()(convnet_outputs)
    convnet_outputs = MaxPooling2D(2, 2)(convnet_outputs)

    convnet_outputs = Dropout(0.2)(convnet_outputs)
    convnet_outputs = Conv2D(48, 3, padding='SAME')(convnet_outputs)
    convnet_outputs = BatchNormalization()(convnet_outputs)
    convnet_outputs = LeakyReLU()(convnet_outputs)
    convnet_outputs = MaxPooling2D(2, 2)(convnet_outputs)

    convnet_outputs = Dropout(0.2)(convnet_outputs)
    convnet_outputs = Conv2D(64, 3, padding='SAME')(convnet_outputs)
    convnet_outputs = BatchNormalization()(convnet_outputs)
    convnet_outputs = LeakyReLU()(convnet_outputs)

    convnet_outputs = Dropout(0.2)(convnet_outputs)
    convnet_outputs = Conv2D(80, 3, padding='SAME')(convnet_outputs)
    convnet_outputs = BatchNormalization()(convnet_outputs)
    convnet_outputs = LeakyReLU()(convnet_outputs)

    num_windows = 119

    convnet_outputs = Permute([2, 1, 3])(convnet_outputs)
    convnet_outputs = Reshape([num_windows, 240])(convnet_outputs)

    # (num_windows, 128)

    for i in range(5):
        convnet_outputs = Dropout(0.5)(convnet_outputs)
        lstm_output = Bidirectional(lstm_fn(
            256, return_sequences=True))(convnet_outputs)
    lstm_output = Dropout(0.5)(lstm_output)

    softmax_output = Dense(num_classes,
                           activation='softmax',
                           name='softmax_output')(lstm_output)
    # (num_windows, num_classes)
    ##### Your code above (Lab 3)

    input_length_processed = Lambda(
        lambda x, num_windows=None: x * num_windows,
        arguments={'num_windows': num_windows})(input_length)

    ctc_loss_output = Lambda(
        lambda x: K.ctc_batch_cost(x[0], x[1], x[2], x[3]), name='ctc_loss')(
            [y_true, softmax_output, input_length_processed, label_length])

    ctc_decoded_output = Lambda(
        lambda x: ctc_decode(x[0], x[1], output_length),
        name='ctc_decoded')([softmax_output, input_length_processed])

    model = KerasModel(
        inputs=[image_input, y_true, input_length, label_length],
        outputs=[ctc_loss_output, ctc_decoded_output])
    return model
Ejemplo n.º 14
0
def get_unet(n_ch, patch_height, patch_width):
    inputs = Input(shape=(n_ch, patch_height, patch_width))
    conv1 = Conv2D(32, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(inputs)
    conv1 = Dropout(0.2)(conv1)
    conv1 = Conv2D(32, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv1)
    pool1 = MaxPooling2D((2, 2))(conv1)
    #
    conv2 = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(pool1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv2)
    pool2 = MaxPooling2D((2, 2))(conv2)
    #
    conv3 = Conv2D(128, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(pool2)
    conv3 = Dropout(0.2)(conv3)
    conv3 = Conv2D(128, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv3)

    up1 = UpSampling2D(size=(2, 2))(conv3)
    up1 = concatenate([conv2, up1], axis=1)
    conv4 = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(up1)
    conv4 = Dropout(0.2)(conv4)
    conv4 = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv4)
    #
    up2 = UpSampling2D(size=(2, 2))(conv4)
    up2 = concatenate([conv1, up2], axis=1)
    conv5 = Conv2D(32, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(up2)
    conv5 = Dropout(0.2)(conv5)
    conv5 = Conv2D(32, (3, 3),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv5)
    #
    conv6 = Conv2D(2, (1, 1),
                   activation='relu',
                   padding='same',
                   data_format='channels_first')(conv5)
    conv6 = Reshape((2, patch_height * patch_width))(conv6)
    conv6 = Permute((2, 1))(conv6)
    ############
    conv7 = Activation('softmax')(conv6)

    model = Model(inputs=inputs, outputs=conv7)

    # sgd = SGD(lr=0.01, decay=1e-6, momentum=0.3, nesterov=False)
    model.compile(optimizer='sgd',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
Ejemplo n.º 15
0
def create_network(n_commands,
                   n_channel,
                   n_value1,
                   n_value2,
                   n_durations,
                   embed_size=100,
                   rnn_units=256,
                   use_attention=False):
    """ create the structure of the neural network """

    commands_in = Input(shape=(None, ), name="commands_in")
    channel_in = Input(shape=(None, ), name="channels_in")
    value1_in = Input(shape=(None, ), name="values1_in")
    value2_in = Input(shape=(None, ), name="values2_in")
    durations_in = Input(shape=(None, ), name="durations_in")

    x1 = Embedding(n_commands, embed_size)(commands_in)
    x2 = Embedding(n_channel, embed_size)(channel_in)
    x3 = Embedding(n_value1, embed_size)(value1_in)
    x4 = Embedding(n_value2, embed_size)(value2_in)
    x5 = Embedding(n_durations, embed_size)(durations_in)

    x = Concatenate()([x1, x2, x3, x4, x5])

    x = LSTM(rnn_units, return_sequences=True)(x)
    # x = Dropout(0.2)(x)

    if use_attention:

        x = LSTM(rnn_units, return_sequences=True)(x)
        # x = Dropout(0.2)(x)

        e = Dense(1, activation='tanh')(x)
        e = Reshape([-1])(e)
        alpha = Activation('softmax')(e)

        alpha_repeated = Permute([2, 1])(RepeatVector(rnn_units)(alpha))

        c = Multiply()([x, alpha_repeated])
        c = Lambda(lambda xin: K.sum(xin, axis=1),
                   output_shape=(rnn_units, ))(c)

    else:
        c = LSTM(rnn_units)(x)
        # c = Dropout(0.2)(c)

    commands_out = Dense(n_commands, activation='softmax',
                         name='commands_out')(c)
    channel_out = Dense(n_channel, activation='softmax',
                        name='channels_out')(c)
    value1_out = Dense(n_value1, activation='softmax', name='values1_out')(c)
    value2_out = Dense(n_value2, activation='softmax', name='values2_out')(c)
    durations_out = Dense(n_durations,
                          activation='softmax',
                          name='durations_out')(c)

    model = Model(
        [commands_in, channel_in, value1_in, value2_in, durations_in],
        [commands_out, channel_out, value1_out, value2_out, durations_out])

    if use_attention:
        att_model = Model(
            [commands_in, channel_in, value1_in, value2_in, durations_in],
            alpha)
    else:
        att_model = None

    opti = RMSprop(lr=0.001)
    model.compile(loss=[
        'categorical_crossentropy', 'categorical_crossentropy',
        'categorical_crossentropy', 'categorical_crossentropy',
        'categorical_crossentropy'
    ],
                  optimizer=opti)

    return model, att_model
Ejemplo n.º 16
0
def EEGNet_old(nb_classes,
               Chans=64,
               Samples=128,
               regRate=0.0001,
               dropoutRate=0.25,
               kernels=[(2, 32), (8, 4)],
               strides=(2, 4)):
    """ Keras Implementation of EEGNet_v1 (https://arxiv.org/abs/1611.08024v2)

    This model is the original EEGNet model proposed on arxiv
            https://arxiv.org/abs/1611.08024v2
    
    with a few modifications: we use striding instead of max-pooling as this 
    helped slightly in classification performance while also providing a 
    computational speed-up. 
    
    Note that we no longer recommend the use of this architecture, as the new
    version of EEGNet performs much better overall and has nicer properties.
    
    Inputs:
        
        nb_classes     : total number of final categories
        Chans, Samples : number of EEG channels and samples, respectively
        regRate        : regularization rate for L1 and L2 regularizations
        dropoutRate    : dropout fraction
        kernels        : the 2nd and 3rd layer kernel dimensions (default is 
                         the [2, 32] x [8, 4] configuration)
        strides        : the stride size (note that this replaces the max-pool
                         used in the original paper)
    
    """

    # start the model
    input_main = Input((Chans, Samples))
    layer1 = Conv2D(16, (Chans, 1),
                    input_shape=(Chans, Samples, 1),
                    kernel_regularizer=l1_l2(l1=regRate,
                                             l2=regRate))(input_main)
    layer1 = BatchNormalization()(layer1)
    layer1 = Activation('elu')(layer1)
    layer1 = Dropout(dropoutRate)(layer1)

    permute_dims = 2, 1, 3
    permute1 = Permute(permute_dims)(layer1)

    layer2 = Conv2D(4,
                    kernels[0],
                    padding='same',
                    kernel_regularizer=l1_l2(l1=0.0, l2=regRate),
                    strides=strides)(permute1)
    layer2 = BatchNormalization()(layer2)
    layer2 = Activation('elu')(layer2)
    layer2 = Dropout(dropoutRate)(layer2)

    layer3 = Conv2D(4,
                    kernels[1],
                    padding='same',
                    kernel_regularizer=l1_l2(l1=0.0, l2=regRate),
                    strides=strides)(layer2)
    layer3 = BatchNormalization()(layer3)
    layer3 = Activation('elu')(layer3)
    layer3 = Dropout(dropoutRate)(layer3)

    flatten = Flatten(name='flatten')(layer3)

    dense = Dense(nb_classes, name='dense')(flatten)
    softmax = Activation('softmax', name='softmax')(dense)

    return Model(inputs=input_main, outputs=softmax)
def est_net(lr, Nt, net, mode):

    # Second part, channel estimator
    x0 = Input(shape=(R, 2))

    if net == 'CNN':

        # change the order
        x1 = Permute((2, 1))(x0)
        x1 = Flatten()(x1)
        x1 = Reshape((R, 2))(x1)

        x1 = Conv1D(filters=96, kernel_size=7, padding='same')(x1)
        x1 = BatchNormalization()(x1)
        x1 = Activation('relu')(x1)
        if mode == 'naive':
            x1 = naive_attention(x1)
        if mode == 'feature':
            x1 = feature_attention(x1, x0)

        x2 = Conv1D(filters=96, kernel_size=5, padding='same')(x1)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        if mode == 'naive':
            x2 = naive_attention(x2)
        if mode == 'feature':
            x2 = feature_attention(x2, x0)

        x3 = Flatten()(x2)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'CNN2':

        x1 = Conv1D(filters=96, kernel_size=7, padding='same')(x0)
        x1 = BatchNormalization()(x1)
        x1 = Activation('relu')(x1)
        x2 = Conv1D(filters=96, kernel_size=7, padding='same')(x1)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        x2 = Conv1D(filters=96, kernel_size=5, padding='same')(x2)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        x2 = Conv1D(filters=96, kernel_size=5, padding='same')(x2)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        x2 = Conv1D(filters=96, kernel_size=3, padding='same')(x2)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)

        x3 = Flatten()(x2)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'CNN3':
        x1 = Flatten()(x0)
        #x1 = Dense(4*Nt,activation='relu')(x1)
        #x1 = BatchNormalization()(x1)
        x1 = Dense(2 * Nt, activation='linear')(x1)
        x1 = Reshape((Nt, 2))(x1)

        x1 = Conv1D(filters=96, kernel_size=7, padding='same')(x1)
        x1 = BatchNormalization()(x1)
        x1 = Activation('relu')(x1)
        if mode == 'naive':
            x1 = naive_attention(x1)
        if mode == 'feature':
            x1 = feature_attention(x1, x0)

        x2 = Conv1D(filters=96, kernel_size=5, padding='same')(x1)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        if mode == 'naive':
            x2 = naive_attention(x2)
        if mode == 'feature':
            x2 = feature_attention(x2, x0)

        x3 = Flatten()(x2)
        #prediction = Conv1D(filters=2,kernel_size=3,padding='same')(x2)
        #prediction = Flatten()(prediction)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'res_CNN':
        x = Conv1D(filters=96, kernel_size=7, padding='same')(x0)
        x = BatchNormalization()(x)
        x_init = Activation('relu')(x)
        if mode == 'naive':
            x_init = naive_attention(x_init)
        if mode == 'feature':
            x_init = feature_attention(x_init, x0)
        for i in range(3):  # number of residual blocks
            x = Conv1D(filters=96, kernel_size=5, padding='same')(x_init)
            x = BatchNormalization()(x)
            x = Activation('relu')(x)
            x = Conv1D(filters=96, kernel_size=3, padding='same')(x)
            x = BatchNormalization()(x)
            if mode == 'naive':
                x = naive_attention(x)
            if mode == 'feature':
                x = feature_attention(x, x0)
            x_init = Add()([x, x_init])
            x_init = Activation('relu')(x_init)

        x2 = Conv1D(filters=96, kernel_size=3, padding='same')(x_init)
        x2 = BatchNormalization()(x2)
        x2 = Activation('relu')(x2)
        if mode == 'naive':
            x2 = naive_attention(x2)
        if mode == 'feature':
            x2 = feature_attention(x2, x0)

        x3 = Flatten()(x2)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'FNN':
        x1 = Flatten()(x0)  # 256,512,256
        x1 = Dense(256, activation='relu')(x1)
        x1 = BatchNormalization()(x1)
        x1 = Dense(512, activation='relu')(x1)
        x1 = BatchNormalization()(x1)
        x1 = Dense(256, activation='relu')(x1)
        x1 = BatchNormalization()(x1)
        x3 = Flatten()(x1)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'FNN3':
        x1 = Flatten()(x0)
        x1 = Dense(96 * 96 // 2, activation='relu')(x1)
        x1 = BatchNormalization()(x1)

        x3 = Flatten()(x1)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    if net == 'FNN2':
        x1 = Flatten()(x0)

        #x1 = Dense(128,activation='relu')(x1)
        #x1 = BatchNormalization()(x1)

        x1 = Dense(16 * 192, activation='relu')(x1)
        x1 = BatchNormalization()(x1)
        # grouping
        x1 = Reshape((16, 192))(x1)
        # attention
        x1 = naive_attention(x1)
        #x1 = feature_attention(x1,x0)

        #x1 = Flatten()(x1)
        #x1 = Dense(512,activation='relu')(x1)
        #x1 = BatchNormalization()(x1)

        x3 = Flatten()(x1)
        prediction = Dense(2 * Nt, activation='linear')(x3)

    model = Model(inputs=x0, outputs=prediction)
    model.compile(loss='mse', optimizer=Adam(lr=lr))
    model.summary()
    return model
Ejemplo n.º 18
0
def attRNN():
    sr = 8000
    inputs = Input((8000, 1), name='input')

    x = Reshape((1, -1))(inputs)

    m = Melspectrogram(n_dft=1024,
                       n_hop=128,
                       input_shape=(1, 8000),
                       padding='same',
                       sr=sr,
                       n_mels=80,
                       fmin=40.0,
                       fmax=sr / 2,
                       power_melgram=1.0,
                       return_decibel_melgram=True,
                       trainable_fb=False,
                       trainable_kernel=False,
                       name='mel_stft')
    m.trainable = False

    x = m(x)

    x = Normalization2D(int_axis=0, name='mel_stft_norm')(x)

    # note that Melspectrogram puts the sequence in shape (batch_size, melDim, timeSteps, 1)
    # we would rather have it the other way around for LSTMs

    x = Permute((2, 1, 3))(x)

    x = Conv2D(10, (5, 1), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)
    x = Conv2D(1, (5, 1), activation='relu', padding='same')(x)
    x = BatchNormalization()(x)

    # x = Reshape((125, 80)) (x)
    # keras.backend.squeeze(x, axis)
    x = Lambda(lambda q: K.squeeze(q, -1), name='squeeze_last_dim')(x)

    x = Bidirectional(LSTM(64, return_sequences=True))(
        x)  # [b_s, seq_len, vec_dim]

    x = Bidirectional(LSTM(64, return_sequences=True))(
        x)  # [b_s, seq_len, vec_dim]

    xFirst = Lambda(lambda q: q[:, -1])(x)  # [b_s, vec_dim]
    query = Dense(128)(xFirst)

    # dot product attention
    attScores = Dot(axes=[1, 2])([query, x])
    attScores = Softmax(name='attSoftmax')(attScores)  # [b_s, seq_len]

    # rescale sequence
    attVector = Dot(axes=[1, 1])([attScores, x])  # [b_s, vec_dim]

    x = Dense(64, activation='relu')(attVector)
    x = Dense(32)(x)

    output = Dense(9, activation='softmax', name='output')(x)

    model = Model(inputs=[inputs], outputs=[output])

    model.compile(optimizer='adam',
                  loss=['sparse_categorical_crossentropy'],
                  metrics=['sparse_categorical_accuracy'])

    return model
Ejemplo n.º 19
0
    def _buildDQN(self):
        """
        Build a network consistent with each type of inputs
        """
        layers = []
        outs_conv = []
        inputs = []

        for i, dim in enumerate(self._input_dimensions):
            # - observation[i] is a FRAME
            if len(dim) == 3 or len(dim) == 4:
                if (len(dim) == 4):
                    input = Input(shape=(dim[-4], dim[-3], dim[-2], dim[-1]))
                    inputs.append(input)
                    input = Reshape((dim[-4] * dim[-3], dim[-2], dim[-1]),
                                    input_shape=(dim[-4], dim[-3], dim[-2],
                                                 dim[-1]))(input)
                    x = Permute(
                        (2, 3, 1),
                        input_shape=(dim[-4] * dim[-3], dim[-2], dim[-1]))(
                            input)  #data_format='channels_last'
                else:
                    input = Input(shape=(dim[-3], dim[-2], dim[-1]))
                    inputs.append(input)
                    x = Permute((2, 3, 1),
                                input_shape=(dim[-3], dim[-2], dim[-1]))(
                                    input)  #data_format='channels_last'
                x = Conv2D(8, (4, 4), activation='relu',
                           padding='valid')(x)  #Conv on the frames
                x = Conv2D(16, (3, 3), activation='relu',
                           padding='valid')(x)  #Conv on the frames
                x = MaxPooling2D(pool_size=(2, 2),
                                 strides=None,
                                 padding='valid')(x)
                x = Conv2D(16, (3, 3), activation='relu',
                           padding='valid')(x)  #Conv on the frames

                out = Flatten()(x)

            # - observation[i] is a VECTOR
            elif len(dim) == 2:
                if dim[0] > 3:
                    input = Input(shape=(dim[0], dim[1]))
                    inputs.append(input)
                    reshaped = Reshape((dim[0], dim[1], 1),
                                       input_shape=(dim[0], dim[1]))(input)
                    x = Conv2D(16, (2, 1), activation='relu',
                               padding='valid')(reshaped)  #Conv on the history
                    x = Conv2D(16, (2, 1), activation='relu', padding='valid')(
                        x)  #Conv on the history & features

                    out = Flatten()(x)
                else:
                    input = Input(shape=(dim[0], dim[1]))
                    inputs.append(input)
                    out = Flatten()(input)

            # - observation[i] is a SCALAR -
            else:
                if dim[0] > 3:
                    # this returns a tensor
                    input = Input(shape=(dim[0], ))
                    inputs.append(input)
                    reshaped = Reshape((1, dim[0], 1),
                                       input_shape=(dim[0], ))(input)
                    x = Conv2D(8, (1, 2), activation='relu',
                               padding='valid')(reshaped)  #Conv on the history
                    x = Conv2D(8, (1, 2), activation='relu',
                               padding='valid')(x)  #Conv on the history

                    out = Flatten()(x)

                else:
                    input = Input(shape=(dim[0], ))
                    inputs.append(input)
                    out = input

            outs_conv.append(out)

        if (self._action_as_input == True):
            if (isinstance(self._n_actions, int)):
                print(
                    "Error, env.nActions() must be a continuous set when using actions as inputs in the NN"
                )
            else:
                input = Input(shape=(len(self._n_actions), ))
                inputs.append(input)
                outs_conv.append(input)

        if len(outs_conv) > 1:
            x = concatenate(outs_conv)
        else:
            x = outs_conv[0]

        # we stack a deep fully-connected network on top
        x = Dense(50, activation='relu')(x)
        x = Dense(20, activation='relu')(x)

        if (self._action_as_input == False):
            if (isinstance(self._n_actions, int)):
                out = Dense(self._n_actions)(x)
            else:
                out = Dense(len(self._n_actions))(x)
        else:
            out = Dense(1)(x)

        model = Model(inputs=inputs, outputs=out)
        layers = model.layers

        # Grab all the parameters together.
        params = [
            param for layer in layers for param in layer.trainable_weights
        ]

        if (self._action_as_input == True):
            return model, params, inputs
        else:
            return model, params
Ejemplo n.º 20
0
def build_and_load_model_tf(model_capacity: str):
    """
    Build the CNN model and load the weights, using the TensorFlow backend

    Parameters
    ----------
    model_capacity : 'tiny', 'small', 'medium', 'large', or 'full'
        String specifying the model capacity, which determines the model's
        capacity multiplier to 4 (tiny), 8 (small), 16 (medium), 24 (large),
        or 32 (full). 'full' uses the model size specified in the paper,
        and the others use a reduced number of filters in each convolutional
        layer, resulting in a smaller model that is faster to evaluate at the
        cost of slightly reduced pitch estimation accuracy.

    Returns
    -------
    model : tensorflow.keras.models.Model
        The pre-trained model loaded in memory
    """
    from tensorflow.keras.layers import (Input, Reshape, Conv2D,
                                         BatchNormalization)
    from tensorflow.keras.layers import (MaxPool2D, Dropout, Permute, Flatten,
                                         Dense)
    from tensorflow.keras.models import Model

    if models['tf'][model_capacity] is None:
        capacity_multiplier = {
            'tiny': 4,
            'small': 8,
            'medium': 16,
            'large': 24,
            'full': 32
        }[model_capacity]

        layers = [1, 2, 3, 4, 5, 6]
        filters = [n * capacity_multiplier for n in [32, 4, 4, 4, 8, 16]]
        widths = [512, 64, 64, 64, 64, 64]
        strides = [(4, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]

        x = Input(shape=(1024, ), name='input', dtype='float32')
        y = Reshape(target_shape=(1024, 1, 1), name='input-reshape')(x)

        for l, f, w, s in zip(layers, filters, widths, strides):
            y = Conv2D(f, (w, 1),
                       strides=s,
                       padding='same',
                       activation='relu',
                       name="conv%d" % l)(y)
            y = BatchNormalization(name="conv%d-BN" % l)(y)
            y = MaxPool2D(pool_size=(2, 1),
                          strides=None,
                          padding='valid',
                          name="conv%d-maxpool" % l)(y)
            y = Dropout(0.25, name="conv%d-dropout" % l)(y)

        y = Permute((2, 1, 3), name="transpose")(y)
        y = Flatten(name="flatten")(y)
        y = Dense(360, activation='sigmoid', name="classifier")(y)

        model = Model(inputs=x, outputs=y)

        package_dir = os.path.dirname(os.path.realpath(__file__))
        filename = "model-{}.h5".format(model_capacity)
        model.load_weights(os.path.join(package_dir, filename))
        model.compile('adam', 'binary_crossentropy')

        models['tf'][model_capacity] = model
Ejemplo n.º 21
0
def attention_3d_block(inputs):
    a = Permute((2, 1))(inputs)
    a = Dense(3, activation='softmax')(a)
    a_probs = Permute((2, 1))(a)
    output_attention_mul = Multiply()([inputs, a_probs])
    return output_attention_mul
Ejemplo n.º 22
0
def buildModel(
    num_input_channels=24,
    num_timesteps=20,
    num_filters=20,
    num_LSTM=20,
    num_Dense=200,
    drop_rate=0.2,
    reg=None,
):
    kernel_size = (3, 3)
    num_classes = 2
    ac = "relu"
    opt = Adam(lr=0.001, decay=0, beta_1=0.9, beta_2=0.999, epsilon=1e-08)

    inp = Input(
        (num_timesteps, num_input_channels, 8, 8)
    )  # timesteps, channels, rows, columns
    permuted = Permute((1, 3, 4, 2))(inp)  # expects channels_last

    x = TimeDistributed(
        Conv2D(
            num_filters,
            kernel_size,
            activation=ac,
            kernel_regularizer=reg,
            # data_format="channels_first",
        )
    )(permuted)

    x = BatchNormalization(axis=-1)(x)
    x = TimeDistributed(
        Conv2D(
            2 * num_filters,
            kernel_size,
            activation=ac,
            kernel_regularizer=reg,
            # data_format="channels_first",
        )
    )(x)
    x = BatchNormalization(axis=-1)(x)
    x = TimeDistributed(
        Conv2D(
            4 * num_filters,
            kernel_size,
            activation=ac,
            kernel_regularizer=reg,
            # data_format="channels_first",
        )
    )(x)
    x = BatchNormalization(axis=-1)(x)
    x = TimeDistributed(
        Conv2D(
            8 * num_filters,
            kernel_size,
            activation=ac,
            kernel_regularizer=reg,
            padding="same",
            # data_format="channels_first",
        )
    )(x)
    x = BatchNormalization(axis=-1)(x)
    x = TimeDistributed(Flatten())(x)
    x = LSTM(num_LSTM)(x)
    x = Dropout(drop_rate)(x)
    x = Dense(num_Dense)(x)
    x = Dropout(drop_rate)(x)
    out = Dense(num_classes, activation="softmax")(x)
    myModel = Model(inputs=[inp], outputs=[out])
    myModel.compile(loss="binary_crossentropy", metrics=["accuracy"], optimizer=opt)
    LOGGER.info("built model!")
    LOGGER.info(myModel.summary())
    return myModel
Ejemplo n.º 23
0
def create_model(input_shape, config):

    weight_decay = 0.001

    model = Sequential()

    model.add(
        Convolution2D(
            16,
            7,
            7,
            kernel_regularizer=l2(weight_decay),
            activation="relu",
            input_shape=input_shape,
        ))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(32,
                      5,
                      5,
                      kernel_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(64,
                      3,
                      3,
                      kernel_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(128,
                      3,
                      3,
                      kernel_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 1)))

    model.add(
        Convolution2D(256,
                      3,
                      3,
                      kernel_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 1)))

    # model.load_weights("logs/2017-04-08-13-03-44/weights.08.model", by_name=True)
    # for ref_layer in ref_model.layers:
    #     layer = model.get_layer(ref_layer.name)
    #     if layer:
    #         layer.set_weights(ref_layer.get_weights())

    for layer in model.layers:
        layer.trainable = False

    # (bs, y, x, c) --> (bs, x, y, c)
    model.add(Permute((2, 1, 3)))

    # (bs, x, y, c) --> (bs, x, y * c)
    bs, x, y, c = model.layers[-1].output_shape
    model.add(Reshape((x, y * c)))

    model.add(
        Bidirectional(LSTM(512, return_sequences=False), merge_mode="concat"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model
Ejemplo n.º 24
0
    def __init__(self, input_shape, model_folder="models/serialized/"):
        super().__init__()
        conv_model = Sequential()
        conv_model.add(Permute((1, 2, 3), input_shape=input_shape))

        for l in Convblock(64, 1, 2):
            conv_model.add(l)
        for l in Convblock(128, 2, 2):
            conv_model.add(l)
        for l in Convblock(256, 3, 3):
            conv_model.add(l)
        for l in Convblock(512, 4, 3):
            conv_model.add(l)
        for l in Convblock(512, 5, 3):
            conv_model.add(l)

        conv_model.add(
            Convolution2D(2048,
                          kernel_size=(7, 7),
                          padding="same",
                          activation="relu",
                          name="fc_6"))

        # Replacing fully connected layers of VGG Net using convolutions -- reduced filters
        conv_model.add(
            Convolution2D(2048,
                          kernel_size=(1, 1),
                          padding="same",
                          activation="relu",
                          name="fc7"))

        conv_model.add(
            Convolution2D(1,
                          kernel_size=(1, 1),
                          padding="same",
                          activation="relu",
                          name="score_fr"))

        Conv_size = conv_model.layers[-1].output_shape[2]
        print("Convolution size: " + str(Conv_size))
        #
        conv_model.add(
            Conv2DTranspose(1,
                            strides=(2, 2),
                            kernel_size=(4, 4),
                            padding="valid",
                            activation=None,
                            name="score2"))

        # I = (O-1)*Stride + K
        Deconv_size = conv_model.layers[-1].output_shape[2]
        print("Deconvolution size: " + str(Deconv_size))
        # 2 if image size is 512*512

        Extra = (Deconv_size - 2 * Conv_size)
        print("Extra size: " + str(Extra))

        # Cropping to get correct size
        conv_model.add(Cropping2D(cropping=((0, Extra), (0, Extra))))

        Conv_size = conv_model.layers[-1].output_shape[2]

        skip_con1 = Convolution2D(1,
                                  kernel_size=(1, 1),
                                  padding="same",
                                  activation=None,
                                  name="score_pool4")

        # Adding skip connection which takes adds the output of Max pooling layer 4 to current layer
        Summed = add(inputs=[
            skip_con1(conv_model.layers[14].output),
            conv_model.layers[-1].output
        ])

        # Upsampling output of first skip connection
        x = Conv2DTranspose(21,
                            kernel_size=(4, 4),
                            strides=(2, 2),
                            padding="valid",
                            activation=None,
                            name="score4")(Summed)
        x = Cropping2D(cropping=((0, 2), (0, 2)))(x)

        # Conv to be applied to pool3
        skip_con2 = Convolution2D(21,
                                  kernel_size=(1, 1),
                                  padding="same",
                                  activation=None,
                                  name="score_pool3")

        # Adding skip connection which takes output og Max pooling layer 3 to current layer
        Summed = add(inputs=[skip_con2(conv_model.layers[10].output), x])

        Up = Conv2DTranspose(1,
                             kernel_size=(16, 16),
                             strides=(8, 8),
                             padding="valid",
                             activation=None,
                             name="upsample")(Summed)

        # Cropping the extra part obtained due to transpose convolution
        final = Cropping2D(cropping=((0, 8), (0, 8)))(Up)
        self.seg_model = Model(conv_model.input, final)

        self.seg_model.summary()
        self.model_folder = model_folder
        self.weights_path = (model_folder +
                             "fcn_weights.best.hdf5").format('seg_model')
        self.set_callbacks()
        self.name = "FCN8"
Ejemplo n.º 25
0
def HRNetDense(input_shape=(128, 128, 3), num_keypoints=20, growth_rate=4):
    # stem
    inputs = Input(shape=input_shape)
    x1 = stem(inputs, 64)
    x1 = Conv2D(64 * 4, 1, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    for block in range(4):
        x1 = bottleneck(x1)

    # stage I
    x1 = Conv2D(32, 3, padding='same', use_bias=False)(x1)
    x1 = BatchNormalization()(x1)
    x1 = Activation('relu')(x1)
    x2 = transition_block(x1, 2)
    print('stage 1', x1.shape, x2.shape)

    # stage II
    x1 = dense_block(x1, 4, growth_rate)
    x2 = dense_block(x2, 4, growth_rate)
    x1, x2 = fuse([x1, x2])
    x3 = transition_block(x2, 0.5)
    print('stage 2', x1.shape, x2.shape, x3.shape)

    # stage III
    x1 = dense_block(x1, 4, growth_rate)
    x2 = dense_block(x2, 4, growth_rate)
    x3 = dense_block(x3, 4, growth_rate)
    x1, x2, x3 = fuse([x1, x2, x3])
    x4 = transition_block(x3, 0.5)
    print('stage 3', x1.shape, x2.shape, x3.shape, x4.shape)

    # stage IV
    x1 = dense_block(x1, 3, growth_rate)
    x2 = dense_block(x2, 3, growth_rate)
    x3 = dense_block(x3, 3, growth_rate)
    x4 = dense_block(x4, 3, growth_rate)
    x1, x2, x3, x4 = fuse([x1, x2, x3, x4])
    print('stage 4', x1.shape, x2.shape, x3.shape, x4.shape)

    x2 = UpSampling2D(size=(2, 2))(x2)
    x3 = UpSampling2D(size=(4, 4))(x3)
    x4 = UpSampling2D(size=(8, 8))(x4)
    x = Concatenate()([x1, x2, x3, x4])

    # head
    x = Conv2D(480, 1)(x)
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(num_keypoints, 1)(x)

    # extra
    x = BatchNormalization(epsilon=1.001e-5)(x)
    x = Activation('relu')(x)
    x = UpSampling2D(size=(4, 4), interpolation='bilinear')(x)
    x = Permute([3, 1, 2])(x)
    x = Reshape([num_keypoints, input_shape[0] * input_shape[1]])(x)
    x = Activation('softmax')(x)
    x = Reshape([num_keypoints, input_shape[0], input_shape[1]])(x)
    outputs = ExpectedValue2D(name='expected_uv')(x)
    model = Model(inputs, outputs, name='hrnet-dense')
    return model
def build_model(X, nb_classes):
    pool_size = (3, 3)  # size of pooling area for max pooling
    kernel_size = (5, 5)  # convolution kernel size
    nb_layers = 6
    input_shape = (X.shape[1], X.shape[2], X.shape[3])

    model = Sequential()

    # 4 2D Convolution Layers
    model.add(
        Conv2D(64,
               input_shape=input_shape,
               kernel_size=kernel_size,
               kernel_regularizer=l2(0.01),
               bias_regularizer=l2(0.01),
               padding="same",
               activation="relu"))
    model.add(MaxPooling2D(pool_size=pool_size))
    model.add(BatchNormalization())
    model.add(Dropout(0.25))

    # model.add(Conv2D(64,kernel_size=kernel_size,kernel_regularizer=l2(0.01),bias_regularizer=l2(0.01),padding="same",activation="relu"))
    # model.add(MaxPooling2D(pool_size=pool_size))
    # model.add(BatchNormalization())
    # model.add(Dropout(0.25))

    # model.add(Conv2D(128,kernel_size=kernel_size,kernel_regularizer=l2(0.01),bias_regularizer=l2(0.01),padding="same",activation="relu"))
    # model.add(MaxPooling2D(pool_size=pool_size))
    # model.add(BatchNormalization())
    # model.add(Dropout(0.2))

    # model.add(Conv2D(128,kernel_size=kernel_size,kernel_regularizer=l2(0.01),bias_regularizer=l2(0.01),padding="same",activation="relu"))
    # model.add(MaxPooling2D(pool_size=pool_size))
    # model.add(BatchNormalization())
    # model.add(Dropout(0.25))

    model.add(Permute((2, 1, 3)))

    last_shape = model.layers[-1].output_shape
    model.add(Reshape((last_shape[1], last_shape[2] * last_shape[3])))

    # 2 LSTM layers
    model.add(
        LSTM(64,
             kernel_regularizer=l2(0.01),
             recurrent_regularizer=l2(0.01),
             recurrent_dropout=0.5,
             return_sequences=True,
             go_backwards=False,
             activation='tanh'))
    model.add(
        LSTM(64,
             kernel_regularizer=l2(0.01),
             recurrent_regularizer=l2(0.01),
             recurrent_dropout=0.5,
             return_sequences=True,
             go_backwards=True,
             activation='tanh'))

    model.add(Dropout(0.25))

    # model.add(Flatten())
    model.add(TimeDistributed(Dense(128, activation='relu')))
    model.add(Dropout(0.25))

    model.add(TimeDistributed(Dense(64, activation='relu')))
    model.add(Dropout(0.2))

    model.add(Flatten())

    #relu throughout the network and softmax at output layer (multiple classes)
    model.add(Dense(nb_classes, activation='softmax'))
    return model
def Create_Model(length, vocab_size):

    # INPUT, EMBEDDING
    inputs0 = Input(batch_shape=(BATCH_SIZE, len(net_train[0])))
    embedding1 = Embedding(vocab_size, 150)(inputs0)
    drop_out1 = Dropout(0.1, name='dropout1')(embedding1)

    # 2 PARTs FOR BIDIRECTIONAL LSTM
    lstm_fwd = LSTM(150, return_sequences=True, name='lstm_fwd')(drop_out1)
    lstm_bwd = LSTM(150,
                    return_sequences=True,
                    go_backwards=True,
                    name='lstm_bwd')(drop_out1)

    # CONCAT 2 PARTS FOR BILSTM
    bilstm = concatenate([lstm_fwd, lstm_bwd],
                         name='bilstm')  # , mode='concat'
    drop_out2 = Dropout(0.1)(bilstm)

    # "LAST ELEMENT FROM TIME DIM"
    h_n = Lambda(get_H_n, output_shape=(300, ), name="h_n")(drop_out2)
    Whn = Dense(300, kernel_regularizer=l2(0.01), name="Wh_n")(h_n)
    Whn_x_e = RepeatVector(L, name="Wh_n_x_e")(Whn)

    # "FIRST first-sentence-MAXLEN ELEMENTS FROM TIME DIM"
    Y = Lambda(get_Y,
               arguments={"xmaxlen": L},
               name="Y",
               output_shape=(L, 300))(drop_out2)
    WY = TimeDistributed(Dense(300, kernel_regularizer=l2(0.01)), name="WY")(Y)

    # CONCAT 2 LAMBA "ATTENTIONS"?
    merged1 = Add()(
        [Whn_x_e,
         WY])  #  concatenate([Whn_x_e, WY], name="merged1", mode='sum')
    M = Activation('tanh', name="M")(merged1)
    alpha_ = TimeDistributed(Dense(1, activation='linear'), name="alpha_")(M)

    # FLATTEN AND GATE
    flat_alpha = Flatten(name="flat_alpha")(alpha_)
    alpha = Dense(L, activation='softmax', name="alpha")(flat_alpha)

    # CHANGE SHAPE OF Y
    Y_trans = Permute((2, 1), name="y_trans")(Y)  # of shape (None,300,20)

    # CONCAT CHANGED Y WITH MAIN PATHWAY OF NN
    r_ = Lambda(get_R,
                output_shape=(300, 1))([Y_trans,
                                        alpha])  #, output_shape=(300, 1)
    #r_ = concatenate([Y_trans, alpha], output_shape=(300, 1), name="r_", mode=get_R)
    r = Reshape((300, ), name="r")(r_)
    Wr = Dense(300, kernel_regularizer=l2(0.01))(r)

    # CALL ALL THE WAY BACK TO h_n... god knows why
    Wh = Dense(300, kernel_regularizer=l2(0.01))(h_n)

    # MERGE MAIN PATHWAY OF NN WITH CALLBACK LAYER TO h_n
    merged2 = Add()([Wr, Wh])  #  concatenate([Wr, Wh], mode='sum')
    h_star = Activation('tanh')(merged2)
    outputs = Dense(3, activation='softmax')(h_star)

    model = Model(inputs=[inputs0], outputs=outputs)

    model.compile(Adam(lr=0.001),
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    print(model.summary())
    plot_model(model, show_shapes=True, to_file='multichannel2.png')
    return model
Ejemplo n.º 28
0
def create_model(input_shape, config, is_training=True):

    weight_decay = 0.001

    model = Sequential()

    model.add(
        Convolution2D(64,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu",
                      input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(128,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(256,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(256,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(512,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    # model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(512,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    model.add(
        Convolution2D(512,
                      3,
                      3,
                      W_regularizer=l2(weight_decay),
                      activation="relu"))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

    # (bs, y, x, c) --> (bs, x, y, c)
    model.add(Permute((2, 1, 3)))

    # (bs, x, y, c) --> (bs, x, y * c)
    bs, x, y, c = model.layers[-1].output_shape
    model.add(Reshape((x, y * c)))

    model.add(
        Bidirectional(LSTM(256, return_sequences=False), merge_mode="concat"))
    model.add(Dense(config["num_classes"], activation="softmax"))

    return model
    def _build_model(self):
        max_seq_length = self.sentence_len * self.num_sentences
        #Embedding Layer
        embedding_layer = Embedding(self.vocab_size,
                                    self.embedding_dim,
                                    input_length=max_seq_length,
                                    trainable=self.train_embedding,
                                    embeddings_regularizer=regularizers.l2(
                                        self.embedding_regularizer_l2),
                                    name='imdb_embedding')

        if self.embedding_weights is not None:
            embedding_layer = Embedding(self.vocab_size,
                                        self.embedding_dim,
                                        weights=[self.embedding_weights],
                                        input_length=max_seq_length,
                                        trainable=self.train_embedding,
                                        embeddings_regularizer=regularizers.l2(
                                            self.embedding_regularizer_l2),
                                        name='imdb_embedding')

        #input layer : sequence of word indices for each sentence
        sequence_input = Input(shape=(max_seq_length, ), dtype='int32')
        z = embedding_layer(sequence_input)
        if self.input_dropout > 0:
            z = Dropout(self.input_dropout)(z)

        conv_blocks = []
        i = 0
        #same convolution filters to be used for all sentences.
        word_conv_model = Conv1D(filters=self.word_filters,
                                 kernel_size=self.word_kernel_size,
                                 padding="valid",
                                 activation=self.conv_activation,
                                 trainable=self.learn_word_conv,
                                 name="word_conv",
                                 strides=1)

        for sent in range(self.num_sentences):
            #get once sentence from the input
            sentence = Lambda(lambda x: x[:, sent * self.sentence_len:(
                sent + 1) * self.sentence_len, :])(z)
            conv = word_conv_model(sentence)
            conv = KMaxPooling(k=self.sent_k_maxpool)(conv)
            #transpose pooled values per sentence
            conv = Reshape([self.word_filters * self.sent_k_maxpool, 1])(conv)
            conv_blocks.append(conv)

        #append all sentence convolution feature maps and make sentence embeddings
        z = Concatenate()(
            conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]

        #transform to (steps, input_dim)
        z = Permute([2, 1], name='sentence_embeddings')(z)

        if self.sent_dropout > 0:
            z = Dropout(self.sent_dropout)(z)

        sent_conv = Conv1D(filters=self.sent_filters,
                           kernel_size=self.sent_kernel_size,
                           padding="valid",
                           activation=self.conv_activation,
                           trainable=self.learn_sent_conv,
                           name='sentence_conv',
                           strides=1)(z)

        z = KMaxPooling(k=self.doc_k_maxpool)(sent_conv)
        z = Flatten(name='document_embedding')(z)

        if self.hidden_gaussian_noise_sd:
            z = GaussianNoise(self.hidden_gaussian_noise_sd)(z)
        elif self.hidden_dropout:
            z = Dropout(self.hidden_dropout)(z)

        for i in range(self.num_hidden_layers):
            layer_name = 'hidden_{}'.format(i)
            z = Dense(self.hidden_dims,
                      activation=self.hidden_activation,
                      name=layer_name,
                      kernel_regularizer=regularizers.l2(
                          self.hidden_layer_kernel_regularizer))(z)

        output_activation = 'sigmoid'
        if self.num_units_final_layer > 1:
            output_activation = 'softmax'

        model_output = Dense(self.num_units_final_layer,
                             activation=output_activation,
                             kernel_regularizer=regularizers.l2(
                                 self.final_layer_kernel_regularizer),
                             name='final')(z)

        self._model = Model(sequence_input, model_output)
Ejemplo n.º 30
0
    def get_model(self):

        inputs_cnn = []
        inputs_lstm = []

        outputs_cnn = []
        lstm = []

        for i in range(self.window_size):
            input_cnn = Input(shape=(self.mesh_rows, self.mesh_columns,
                                     self.depth),
                              name="input" + str(i + 1))
            input_lstm = Input(shape=(self.number_channels, self.depth),
                               name="input" + str(i + 1 + self.window_size))
            inputs_cnn.append(input_cnn)
            inputs_lstm.append(input_lstm)

            conv1 = self.tfaugmented_conv2d(input_cnn,
                                            self.conv1_filters,
                                            self.conv1_kernel_shape,
                                            dk=self.depth_k,
                                            dv=self.depth_v,
                                            Nh=self.num_heads,
                                            relative=self.relative)
            norm1 = BatchNormalization(axis=-1)(conv1)

            conv2 = Conv2D(self.conv2_filters,
                           self.conv2_kernel_shape,
                           padding=self.padding2,
                           activation=self.conv2_activation)(norm1)
            conv3 = Conv2D(self.conv3_filters,
                           self.conv3_kernel_shape,
                           padding=self.padding3,
                           activation=self.conv3_activation)(conv2)

            flat = Flatten()(conv3)
            dense = Dense(self.dense_nodes,
                          activation=self.dense_activation)(flat)
            outputs_cnn.append(dense)

            permut = Permute((2, 1),
                             input_shape=(self.number_channels, 1))(input_lstm)
            dense = Dense(self.dense_nodes,
                          activation=self.dense_activation,
                          input_shape=(1, self.number_channels))(permut)
            lstm.append(dense)

        merge = concatenate(lstm, axis=1)
        lstm1 = LSTM(self.lstm1_cells, return_sequences=True)(merge)

        attention_output = self.attention_block(lstm1)
        attention_output = tf.expand_dims(attention_output, -1)

        lstm2 = LSTM(self.lstm2_cells,
                     return_sequences=False)(attention_output)

        dense3 = Dense(self.dense3_nodes,
                       activation=self.dense3_activation)(lstm2)

        added = Add()([i for i in outputs_cnn])
        final = concatenate([dense3, added], axis=-1)
        output = Dense(4, activation="softmax")(final)

        model = Model(inputs=inputs_cnn + inputs_lstm, outputs=output)
        return model