Ejemplo n.º 1
0
 def __init__(self,
              model,
              loss=MeanAbsoluteError(),
              learning_rate=PiecewiseConstantDecay(boundaries=[200000],
                                                   values=[1e-4, 5e-5]),
              checkpoint_dir='./ckpt/edsr'):
     super().__init__(model, loss, learning_rate, checkpoint_dir)
Ejemplo n.º 2
0
def main():
    batch = 8
    epoch = 20
    loss = MeanAbsoluteError()
    learning_rate = PiecewiseConstantDecay(boundaries=[100000],
                                           values=[1e-4, 5e-5])
    res_blocks = [
        15, 15, 15, 15, 15, 9, 9, 9, 9, 9, 5, 5, 5, 5, 5, 3, 3, 3, 3, 3
    ]
    checkpoint_dir = './ckpt/edsr'

    # 데이터 가져오기
    ds_train = VCTK(subset='train').dataset()
    ds_valid = VCTK(subset='valid').dataset()

    # 모델 빌딩
    edsr_model = edsr2(scale=4, res_blocks=res_blocks, res_block_scaling=0.7)

    # 훈련
    edsr_trainer = EDSRTrainer(model=edsr_model,
                               loss=loss,
                               learning_rate=learning_rate,
                               checkpoint_dir=checkpoint_dir)
    edsr_trainer.train(train_dataset=ds_train,
                       valid_dataset=ds_valid,
                       batch=batch,
                       epoch=epoch)

    edsr_model.save_weights(
        f'./weights/EDSR_16000_{len(res_blocks)}res_{batch}batch_{epoch}epochs_tanh_entropy_glorot_uniform.h5'
    )
Ejemplo n.º 3
0
    def __init__(self, lr, lr_mode, lr_interval, lr_value, total_epochs,
                 steps_per_epoch, initial_epoch):

        super(OptionalLearningRateSchedule, self).__init__()
        self.lr = lr
        self.lr_mode = lr_mode
        self.lr_interval = lr_interval
        self.lr_value = lr_value
        self.total_epochs = total_epochs
        self.steps_per_epoch = steps_per_epoch
        self.initial_epoch = initial_epoch

        if self.lr_mode == 'exponential':
            decay_epochs = [int(e) for e in self.lr_interval.split(',')]
            lr_values = [
                self.lr * (self.lr_value**k)
                for k in range(len(decay_epochs) + 1)
            ]
            self.lr_scheduler = PiecewiseConstantDecay(decay_epochs, lr_values)

        elif self.lr_mode == 'cosine':
            self.lr_scheduler = CosineDecay(self.lr, self.total_epochs)

        elif self.lr_mode == 'constant':
            self.lr_scheduler = lambda x: self.lr

        else:
            raise ValueError(self.lr_mode)
Ejemplo n.º 4
0
def get_lr_scheduler(learning_rate, decay_type, decay_steps):
    if decay_type:
        decay_type = decay_type.lower()

    if decay_type == None:
        lr_scheduler = learning_rate
    elif decay_type == 'cosine':
        lr_scheduler = CosineDecay(
            initial_learning_rate=learning_rate,
            decay_steps=decay_steps,
            alpha=0.2)  # use 0.2*learning_rate as final minimum learning rate
    elif decay_type == 'exponential':
        lr_scheduler = ExponentialDecay(initial_learning_rate=learning_rate,
                                        decay_steps=decay_steps,
                                        decay_rate=0.9)
    elif decay_type == 'polynomial':
        lr_scheduler = PolynomialDecay(initial_learning_rate=learning_rate,
                                       decay_steps=decay_steps,
                                       end_learning_rate=learning_rate / 100)
    elif decay_type == 'piecewise_constant':
        #apply a piecewise constant lr scheduler, including warmup stage
        boundaries = [500, int(decay_steps * 0.9), decay_steps]
        values = [
            0.001, learning_rate, learning_rate / 10., learning_rate / 100.
        ]
        lr_scheduler = PiecewiseConstantDecay(boundaries=boundaries,
                                              values=values)
    else:
        raise ValueError('Unsupported lr decay type')

    return lr_scheduler
Ejemplo n.º 5
0
def main(train, eval, test_img_path=None, test_subtle=False):
    # Construct model
    input_tensor = Input(shape=(32, 32, 3))
    x = Lambda(lambda input_tensor: input_tensor)(input_tensor)
    for _ in range(4):
        x = Conv2D(64, 3, padding='same', activation='relu')(x)
    x = Conv2D(3, 3, padding='same')(x)
    model = Model(input_tensor, x)

    lr_schedule = PiecewiseConstantDecay([30 * 1563, 60 * 1563],
                                         [1e-4, 1e-5, 5e-6])
    model.compile(optimizer=Adam(lr_schedule), loss='mse')

    # Train
    if train:
        # Load data
        (x_train, _), (_, _) = cifar10.load_data()
        x_train = x_train.astype('float32') / 255.
        y_train = x.train.copy()
        x_train += np.random.normal(0, .1, x_train.shape)
        model.fit(x_train, y_train, batch_size=32, epochs=100)
        model.save_weights('./checkpoints/model1')
    else:
        model.load_weights('./checkpoints/model1')

    if eval:
        # Load data
        (_, _), (x_test, _) = cifar10.load_data()
        x_test = x_test.astype('float32') / 255.
        y_test = x_test.copy()
        x_test += np.random.normal(0, .1, x_test.shape)
        print('Evaluating: ')
        model.evaluate(x_test, y_test)

    # Test
    if test_img_path is not None:
        test_img = load_img(test_img_path)
        test_img = img_to_array(test_img).astype(np.float32) / 255.
        new_img = np.zeros_like(test_img)

        if test_subtle:
            i_end = test_img.shape[0] - 16
            j_end = test_img.shape[1] - 16
            for i in range(0, i_end, 16):
                for j in range(0, j_end, 16):
                    predicted = model.predict(
                        np.expand_dims(test_img[i:i + 32, j:j + 32], 0))
                    new_img[i+8*(i!=0) : i+32-8*(i!=i_end-16), j+8*(j!=0) : j+32-8*(j!=j_end-16)] \
                        = predicted[:, 8*(i!=0) : 32-8*(i!=i_end-16), 8*(j!=0) : 32-8*(j!=j_end-16)]
        else:
            for i in range(0, test_img.shape[0], 32):
                for j in range(0, test_img.shape[1], 32):
                    new_img[i:i + 32, j:j + 32] = model.predict(
                        np.expand_dims(test_img[i:i + 32, j:j + 32], 0))

        new_img = array_to_img(new_img)
        new_img.save('data/Model1.png')
        new_img.show()
Ejemplo n.º 6
0
 def __init__(self,
              model,
              checkpoint_dir,
              learning_rate=PiecewiseConstantDecay(boundaries=[200000],
                                                   values=[1e-3, 5e-4])):
     super().__init__(model,
                      loss=MeanAbsoluteError(),
                      learning_rate=learning_rate,
                      checkpoint_dir=checkpoint_dir)
Ejemplo n.º 7
0
def get_optimizer(steps_per_epoch,
                  initial_lr=1e-4,
                  halve_epochs=[80, 120, 150]):
    from tensorflow.keras.optimizers import Adam
    from tensorflow.keras.optimizers.schedules import PiecewiseConstantDecay

    lr_schedule = PiecewiseConstantDecay(
        [steps_per_epoch * epochs for epochs in halve_epochs],
        [initial_lr / (2**i) for i in range(len(halve_epochs) + 1)])
    optimizer = Adam(learning_rate=lr_schedule)
    return optimizer
Ejemplo n.º 8
0
    def test_stepped_lr_schedule_output(self):
        step_boundaries = [2, 5, 10]
        lr_values = [0.1, 0.2, 0.3, 0.4]
        schedule = PiecewiseConstantDecay(step_boundaries, lr_values)

        step_boundaries = step_boundaries.copy()
        step_boundaries.insert(0, -1)
        step_boundaries.append(step_boundaries[-1] * 2)

        for i, lr_value in enumerate(lr_values):
            step = randint(step_boundaries[i] + 1, step_boundaries[i + 1])
            assert schedule(step) == lr_value
Ejemplo n.º 9
0
    def train(self, train_data, train_target, epochs, steps_per_epoch,
              val_split, boundries, values):

        optim_edsr = Adam(learning_rate=PiecewiseConstantDecay(
            boundaries=boundries, values=values))
        self.model.compile(optimizer=optim_edsr, loss='mean_absolute_error')
        self.model.fit(x=train_data,
                       y=train_target,
                       epochs=epochs,
                       steps_per_epoch=steps_per_epoch,
                       batch_size=self.batch,
                       validation_split=val_split)
Ejemplo n.º 10
0
    def __init__(self, generator, discriminator, cycle_loss_weight, identity_loss_weight, gradient_penalty_weight,
                 learning_rate=PiecewiseConstantDecay(boundaries=[100], values=[2e-4, 2e-5]), beta_1=0.5):
        self.A2B_G = generator
        self.B2A_G = generator
        self.A_D = discriminator
        self.B_D = discriminator

        self.generator_optimizer = Adam(learning_rate=learning_rate, beta_1=beta_1)
        self.discriminator_optimizer = Adam(learning_rate=learning_rate, beta_1=beta_1)

        self.cycle_loss_weight = cycle_loss_weight
        self.identity_loss_weight = identity_loss_weight
        self.gradient_penalty_weight = gradient_penalty_weight

        self.mean_squared_error = MeanSquaredError()
        self.mean_absolute_error = MeanAbsoluteError()
 def __init__(self,
              model,
              loss,
              checkpoint_dir,
              learning_rate=PiecewiseConstantDecay(boundaries=[200000],
                                                   values=[1e-3, 5e-4])):
     if loss == 'MAE':
         loss = MeanAbsoluteError()
     elif loss == 'MSE':
         loss = MeanSquaredError()
     else:
         raise ValueError("loss specified incorrectly")
     super().__init__(model,
                      loss=MeanAbsoluteError(),
                      learning_rate=learning_rate,
                      checkpoint_dir=checkpoint_dir)
Ejemplo n.º 12
0
    def __init__(self,
                 generator,
                 discriminator,
                 content_loss='VGG54',
                 learning_rate=PiecewiseConstantDecay(boundaries=[100000],
                                                      values=[1e-4, 1e-5])):

        self.vgg = vgg_54()
        self.content_loss = content_loss
        self.generator = generator
        self.discriminator = discriminator
        self.generator_optimizer = Adam(learning_rate=learning_rate)
        self.discriminator_optimizer = Adam(learning_rate=learning_rate)

        self.binary_cross_entropy = BinaryCrossentropy(from_logits=False)
        self.mean_squared_error = MeanSquaredError()
Ejemplo n.º 13
0
    def __init__(self,generator,discriminator,content_loss='VGG54',learning_rate=PiecewiseConstantDecay(boundaries=[100000], values=[1e-4, 1e-5])):

        if content_loss == 'VGG22':
            self.vgg = srgan.vgg_22()
        elif content_loss == 'VGG54':
            self.vgg = srgan.vgg_54()
        else:
            raise ValueError("content_loss must be either 'VGG22' or 'VGG54'")

        self.content_loss = content_loss
        self.generator = generator
        self.discriminator = discriminator
        self.generator_optimizer = Adam(learning_rate=learning_rate)
        self.discriminator_optimizer = Adam(learning_rate=learning_rate)

        self.binary_cross_entropy = BinaryCrossentropy(from_logits=False)
        self.mean_squared_error = MeanSquaredError()
Ejemplo n.º 14
0
def setup_model():
    if FLAGS.ImageType == 'MNIST':
        Generator = Gen_Net(1)
        Discriminator = Dis_Net([FLAGS.DisInSize, FLAGS.DisInSize], 1)
    else:
        Generator = Gen_Net(3)
        Discriminator = Dis_Net([FLAGS.DisInSize, FLAGS.DisInSize], 3)
    if FLAGS.ImageType == 'MNIST':
        one_epoch_size = 60000 // FLAGS.BATCH_SIZE + 1
    else:
        one_epoch_size = 162769 // FLAGS.BATCH_SIZE + 1
    boundaries = [
        one_epoch_size * 15, one_epoch_size * 25, one_epoch_size * 28
    ]
    values = [FLAGS.lr, FLAGS.lr / 10, FLAGS.lr / 100, FLAGS.lr / 1000]
    lr_fn = PiecewiseConstantDecay(boundaries, values)

    G_opt = tf.keras.optimizers.Adam(lr_fn, 0.5)
    D_opt = tf.keras.optimizers.Adam(lr_fn, 0.5)
    return Generator, Discriminator, G_opt, D_opt
Ejemplo n.º 15
0
def create_model(w=19, D=500, initial_lr=0.001):
    """
    create a CNN for coronary artery centerline extraction

    :param initial_lr: initial learning rate for Adam optimizer
    :param w: on of the three input dimensions of the isotropic 3D image
    :param D: number of categories of directions
    :return: constructed model
    """

    if IMAGE_FORMAT == "channels_last":
        inputs = Input(shape=(w, w, w, 1), name="input")
    else:
        inputs = Input(shape=(1, w, w, w), name="input")

    x = conv_block(inputs, 32, (3, 3, 3), 1, idx=1)
    x = conv_block(x, 32, (3, 3, 3), 1, idx=2)
    x = conv_block(x, 32, (3, 3, 3), 2, idx=3)
    x = conv_block(x, 32, (3, 3, 3), 4, idx=4)

    # tracker
    x = conv_block(x, 64, (3, 3, 3), 1, idx=5)
    x = conv_block(x, 64, (1, 1, 1), 1, idx=6)
    x = Conv3D(D + 1, (1, 1, 1), dilation_rate=1, name="conv7")(x)
    x = Flatten(name="flatten")(x)
    x = final_activation(x)
    x = Concatenate(name="concatenate")(x)

    # # discriminator
    # x = conv_block(x, 64, (3, 3, 3), 1, idx=5)
    # x = conv_block(x, 64, (1, 1, 1), 1, idx=6)
    # x = Conv3D(D + 1, (1, 1, 1), dilation_rate=1, name="conv7")(x)
    # x = Flatten(name="flatten")(x)

    model = Model(inputs=inputs, outputs=x)
    schedule = PiecewiseConstantDecay(
        [i * 10000 for i in range(1, 6)],
        [initial_lr * (0.1**i) for i in range(0, 6)])
    optimizer = Adam(learning_rate=schedule)
    model.compile(optimizer=optimizer, loss=custom_loss)
    return model
Ejemplo n.º 16
0
                                 config.pretrained_type,
                                 checkpoint_dir=config.checkpoint_dir)
    except Exception as e:
        print(e)
        print('The program is exiting...')
        sys.exit()

    criterion = losses.create_losses(config.neg_ratio, NUM_CLASSES)

    steps_per_epoch = train_length // config.batch_size

    lr_fn = PiecewiseConstantDecay(boundaries=[
        int(steps_per_epoch * config.num_epochs * 2 / 3),
        int(steps_per_epoch * config.num_epochs * 5 / 6)
    ],
                                   values=[
                                       config.initial_lr,
                                       config.initial_lr * 0.1,
                                       config.initial_lr * 0.01
                                   ])
    optimizer = tf.keras.optimizers.Adam(learning_rate=lr_fn)
    '''
    optimizer = tf.keras.optimizers.SGD(
        learning_rate=lr_fn,
        momentum=config.momentum)
    '''
    train_log_dir = 'logs/train'
    #val_log_dir = 'logs/val'
    train_summary_writer = tf.summary.create_file_writer(train_log_dir)
    #val_summary_writer = tf.summary.create_file_writer(val_log_dir)
Ejemplo n.º 17
0
    w = bird_data.get_w(alpha=1)  # (50*150)
    train_class_list, test_class_list = bird_data.get_class_split(mode="easy")
    train_ds, test_ds = bird_data.load_gpu(batch_size=BATCH_SIZE)

    #path_root = os.path.abspath(os.path.dirname(__file__))
    #database = DataSet("/Volumes/Watermelon")  # path_root)
    #PHI = database.get_phi()
    #DS, DS_test = database.load_gpu(batch_size=5)  # image_batch, label_batch
    modelaki = FinalModel()

    # define loss and opt functions
    loss_fun = Loss().final_loss
    step = tf.Variable(0, trainable=False)
    boundaries = [187 * 5, 187 * 10]
    values = [0.05, 0.005, 0.0005]
    learning_rate_fn = PiecewiseConstantDecay(boundaries, values)
    # Later, whenever we perform an optimization step, we pass in the step.
    learning_rate = learning_rate_fn(step)
    opt_fun = tfa.optimizers.SGDW(learning_rate=learning_rate,
                                  weight_decay=5 * 1e-4,
                                  momentum=0.9)
    # opt_fun = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9)

    # define checkpoint settings
    ckpt = tf.train.Checkpoint(step=tf.Variable(1),
                               optimizer=opt_fun,
                               net=modelaki)
    manager = tf.train.CheckpointManager(
        ckpt, path_root + '/tf_ckpts',
        max_to_keep=10)  # keep only the three most recent checkpoints
    ckpt.restore(
Ejemplo n.º 18
0
                                            perception_kernel_size=3),
        perception_kernel_type=watcher.rlog("neural_model",
                                            perception_kernel_type='sobel'),
        perception_kernel_norm_value=watcher.rlog(
            "neural_model", perception_kernel_norm_value=8),
        observation_angle=watcher.rlog("neural_model", observation_angle=0.0),
        last_conv_filters=watcher.rlog("neural_model", last_conv_filters=128),
        last_conv_kernel_size=watcher.rlog("neural_model",
                                           last_conv_kernel_size=1),
        stochastic_update=watcher.rlog("neural_model", stochastic_update=True))

    lr = watcher.rlog("optimizer", learning_rate=2e-3)
    lr_multiplier = watcher.rlog("optimizer", lr_multiplier=0.1)
    boundaries_decay_values = [lr, lr * lr_multiplier]
    lr_scheduler = PiecewiseConstantDecay(
        boundaries=[watcher.rlog("optimizer", boundaries=2000)],
        values=boundaries_decay_values)
    model_optimizer = Adam(lr_scheduler)
    model.compile(optimizer=model_optimizer, loss=l2_loss)

    trainer = TFCATrainer(data_generator=data_generator,
                          model=model,
                          optimizer=model_optimizer,
                          watcher=watcher,
                          loss_function=l2_loss)

    trainer.train(train_steps=watcher.rlog("training_process",
                                           train_steps=2000),
                  batch_size=watcher.rlog("training_process", batch_size=8),
                  grad_norm_value=watcher.rlog("training_process",
                                               grad_norm_value=1e-8),
Ejemplo n.º 19
0
    ssd = SSD(num_classes=len(dataset.label_ids) + 1, input_shape=INPUT_SHAPE)
    checkpoint = tf.train.Checkpoint(ssd)
    ssd.summary()
    _ = input("Press Enter to continue...")

    ## 4. Generate default boxes
    print("\t4. Default boxes generation...")
    fm_shapes = ssd.output_shape
    aspect_ratios = ASPECT_RATIOS
    scales = SCALES
    default_boxes = Image.generate_default_boxes(fm_shapes, aspect_ratios,
                                                 scales)

    ## 5. Learning initializations
    print("\t5. Learning initialization...")
    learning_rate = PiecewiseConstantDecay(boundaries=BOUNDARIES,
                                           values=LR_VALUES)
    ssd_optimizer = SGD(learning_rate=learning_rate, momentum=MOMENTUM)
    ssd_loss = SSD_Loss(default_boxes=default_boxes,
                        num_classes=ssd.num_classes,
                        regression_type=REGRESSION_TYPE,
                        hard_negative_ratio=3,
                        alpha=ALPHA)

    ## 6. Training initializations
    print("\t6. Final training initializations...")
    last_iter = 0
    iterations = []
    mb_losses, loc_losses, conf_losses = [], [], []
    if TENSORBOARD_LOGS:
        writer = SummaryWriter(comment="SSD | __" + DATASET_NAME +
                               DATASET_KEY + "__")
Ejemplo n.º 20
0
model.add(layers.Dense(10, activation=None,
                       name='output'))  # None means no activation or linear

model.summary()

# In[7]:

from tensorflow.keras.optimizers.schedules import PiecewiseConstantDecay

batch_size = 64
num_instance = 50000
# Let's say, if we want to decay the learning rate at 40, 80, 160 epochs
boundary = (40 * num_instance // batch_size, 80 * num_instance // batch_size,
            160 * num_instance // batch_size)
value = (1e-3, 3e-4, 1e-4, 3e-5)
learning_rate = PiecewiseConstantDecay(boundary, value)
print(learning_rate)

# in the loss, from_logits=True because we use linear activation at the last layer
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
              loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

print('Model compiled.')

# In[8]:

# Train the model
epochs = 60
print(x_train.shape)
print(y_train.shape)
Ejemplo n.º 21
0
DECAY_STEPS = (STEPS_PER_EPOCH * EPOCHS) // ACCUM_STEPS


E1 = 30 - CURR_EPOCH
E2 = 60 - CURR_EPOCH
E3 = 90 - CURR_EPOCH

S1 = (STEPS_PER_EPOCH * E1) // ACCUM_STEPS
S2 = (STEPS_PER_EPOCH * E2) // ACCUM_STEPS
S3 = (STEPS_PER_EPOCH * E3) // ACCUM_STEPS

print("--- LR decay --- \nstep {}: {} \nstep {}: {} \nstep {}: {}".format(S1, 1e-2, S2, 1e-3, S3, 1e-4))


learning_rate_fn = PiecewiseConstantDecay(
    boundaries = [S1, S2, S3], 
    values = [0.1, 0.01, 0.001, 0.0001]
)


model.compile(
    optimizer = SGD(learning_rate=learning_rate_fn, momentum=0.9, decay=0.0001),
    loss=CategoricalCrossentropy(from_logits=True),
    metrics = ['accuracy']
)


callbacks = [
    ModelCheckpoint(
        MODEL_PATH, 
        monitor='val_accuracy', 
        mode='max', 
Ejemplo n.º 22
0
                mode='train', augmentation=['flip'])  # the patching algorithm is currently causing bottleneck sometimes


    dummy = tf.random.normal((1, 300, 300, 3))
    ssd = create_pre_ssd_mobilenetv1_lite(weights=None)

    pretrained_type = 'specified'
    checkpoint_path = CHECKPOINT_PATH
    
    net = init_ssd(ssd, pretrained_type, checkpoint_path)

    criterion = create_losses(NEG_RATIO, NUM_CLASSES)
    steps_per_epoch = info['length'] // BATCH_SIZE

    lr_fn = PiecewiseConstantDecay(
            boundaries=[int(steps_per_epoch * NUM_EPOCHS * 2 / 3),
                        int(steps_per_epoch * NUM_EPOCHS * 5 / 6)],
            values=[INITIAL_LR, INITIAL_LR * 0.1, INITIAL_LR * 0.01])

    optimizer = tf.keras.optimizers.SGD(
        learning_rate=INITIAL_LR,
        momentum=MOMENTUM)

    train_log_dir = 'logs/train'
    val_log_dir = 'logs/val'

    train_summary_writer = tf.summary.create_file_writer(train_log_dir)
    val_summary_writer = tf.summary.create_file_writer(val_log_dir)

    @tf.function
    def train_step(imgs, gt_confs, gt_locs, ssd, criterion, optimizer):
        with tf.GradientTape() as tape:
Ejemplo n.º 23
0
def main(args):
    tf.random.set_seed(0)

    # Search for an existing checkpoint
    _ensure_exists(args.checkpoint_dir)
    initial_epoch = 0
    checkpoint = None
    for filename in os.listdir(args.checkpoint_dir):
        pieces = path.splitext(filename)[0].split('_')
        if args.name != '_'.join(pieces[:-1]):
            continue
        if pieces[-1] == 'best':
            # Don't overwrite any existing best model
            i = 0
            base = path.join(args.checkpoint_dir, '_'.join(pieces) + '{}.h5')
            while path.exists(base.format(i)):
                i += 1
            os.rename(base.format(''), base.format(i))
        elif 'best' not in pieces[-1]:
            epoch = int(pieces[-1])
            if epoch > initial_epoch:
                initial_epoch = epoch
                checkpoint = filename

    # Load or create the model
    if checkpoint is not None:
        model = load_model(path.join(args.checkpoint_dir, checkpoint))
        need_compile = False
        need_learning_rate = False
    elif args.model_file is not None:
        model = load_model(args.model_file)
        need_compile = False
        need_learning_rate = True
    else:
        model = mobilenet(input_size=tuple(args.size), l2_decay=args.l2_decay)
        if args.weight_file is not None:
            model.load_weights(args.weight_file)
        need_compile = True
        need_learning_rate = True

    # Load the dataset (train and validation splits)
    train_data, train_steps = imagenet('train',
                                       tuple(args.size),
                                       augment=not args.no_augment)
    val_data, val_steps = imagenet('val', tuple(args.size), augment=False)

    # Prepare the model for training
    if need_compile:
        model.compile(optimizer=getattr(tf.keras.optimizers, args.optimizer)(),
                      loss='categorical_crossentropy',
                      metrics=['accuracy', 'top_k_categorical_accuracy'])
    if need_learning_rate:
        if len(args.learning_rates) > 1:
            model.optimizer.learning_rate = PiecewiseConstantDecay(
                [x * train_steps for x in args.learning_rate_boundaries],
                args.learning_rates)
        else:
            model.optimizer.learning_rate = args.learning_rates[0]

    # Set up training callbacks (checkpointing and TensorBoard)
    best_filename = path.join(args.checkpoint_dir, args.name + '_best.h5')
    callbacks = [
        ModelCheckpoint(
            path.join(args.checkpoint_dir, args.name + '_{epoch:d}.h5')),
        ModelCheckpoint(best_filename, save_best_only=True)
    ]
    if args.tensorboard_dir != '':
        _ensure_exists(args.tensorboard_dir)
        now_str = datetime.now().strftime('_%Y-%m-%d_%H-%M-%S')
        callbacks.append(
            TensorBoard(log_dir=path.join(args.tensorboard_dir, args.name +
                                          now_str)))

    model.fit(x=train_data,
              epochs=args.epochs,
              verbose=args.verbosity,
              callbacks=callbacks,
              validation_data=val_data,
              initial_epoch=initial_epoch,
              steps_per_epoch=train_steps,
              validation_steps=val_steps)

    # Finalize and clean up
    _ensure_exists(args.model_dir)
    best_loss = np.inf
    for filename in os.listdir(args.checkpoint_dir):
        pieces = path.splitext(filename)[0].split('_')
        if args.name != '_'.join(pieces[:-1]):
            continue
        if 'best' in pieces[-1]:
            # Is this the best of the "best" models?
            model = load_model(path.join(args.checkpoint_dir, filename))
            loss = model.evaluate(x=val_data, steps=val_steps)[0]
            if loss < best_loss:
                best_loss = loss
                model.save(path.join(args.model_dir, args.name + '.h5'))
        os.remove(path.join(args.checkpoint_dir, filename))
Ejemplo n.º 24
0
classes_to_include = [
    'X4'
]

### initalize loaders ###
train_ds = dp.training_data_loader(base_dir="C:/Users/Noah Barrett/Desktop/School/Research 2020/code/main/scraps/super-res/super-resolution/.div2k/images/DIV2K_train_LR_bicubic/train_data")
test_ds = dp.testing_data_loader(base_dir="C:/Users/Noah Barrett/Desktop/School/Research 2020/code/main/scraps/super-res/super-resolution/.div2k/images/DIV2K_train_LR_bicubic/test_data")
### load data ###
train_ds.load_data(selected_classes=classes_to_include)
test_ds.load_data(selected_classes=classes_to_include)
train_ds = train_ds.get_dataset()
print(type(train_ds))
"""
train model
"""
# Create directory for saving model weights
weights_dir = 'weights/article'
os.makedirs(weights_dir, exist_ok=True)

# EDSR baseline as described in the EDSR paper (1.52M parameters)
model_edsr = edsr(scale=4, num_res_blocks=16)

# Adam optimizer with a scheduler that halfs learning rate after 200,000 steps
optim_edsr = Adam(learning_rate=PiecewiseConstantDecay(boundaries=[200000], values=[1e-4, 5e-5]))

# Compile and train model for 300,000 steps with L1 pixel loss
model_edsr.compile(optimizer=optim_edsr, loss='mean_absolute_error')
model_edsr.fit(train_ds, epochs=300, steps_per_epoch=1000)

# Save model weights
model_edsr.save_weights(os.path.join(weights_dir, 'weights-edsr-16-x4.h5'))
Ejemplo n.º 25
0
    def optimizer(self):

        self.opt = Adam(learning_rate=PiecewiseConstantDecay(
            boundaries=[40], values=[self.lr * 10, self.lr]))
Ejemplo n.º 26
0
    def __init__(
        self,
        learning_rate,
        discount,
        actions_num,
        epsilon,
        batch_size,
        input_shape,
        stop_decay_after,
        epsilon_min,
        memory_size,
        update_every,
        model_filename,
        layers,
        neurons,
        architecture,
        # lr_decay_rate, lr_decay_steps,
        lr_bounds,
        lr_values,
        trained_model=None,
    ):

        self.action_space = [i for i in range(actions_num)]

        self.discount = discount

        self.epsilon = epsilon
        # self.epsilon_decay_rate = epsilon_decay_rate
        self.epsilon_decay_rate = math.exp(
            math.log(epsilon_min) / stop_decay_after)
        self.epsilon_min = epsilon_min

        self.update_every = update_every
        self.batch_size = batch_size

        self.learn_step_counter = 0

        self.memory = ReplayMemory(memory_size, input_shape)

        self.main_model = make_model(architecture,
                                     layers=layers,
                                     actions_num=actions_num,
                                     neurons=neurons)
        self.target_model = make_model(architecture,
                                       layers=layers,
                                       actions_num=actions_num,
                                       neurons=neurons)

        lr_schedule = PiecewiseConstantDecay(lr_bounds, lr_values)

        self.main_model.compile(optimizer=Adam(learning_rate=lr_schedule),
                                loss='mse')
        self.target_model.compile(optimizer=Adam(learning_rate=learning_rate),
                                  loss='mse')

        self.model_file = trained_model

        if trained_model != None:
            # Da bi nastale tezine mora se jednom pozvati model
            self.main_model(tf.ones((1, *input_shape)))
            self.target_model(tf.ones((1, *input_shape)))

            self.load_trained_model()
            # self.weights_file = trained_model
            # elf.load_trained_model()

        self.model_filename = model_filename
                         args.pretrained_type,
                         checkpoint_dir=args.checkpoint_dir,
                         checkpoint_path=args.checkpoint_path)
    except Exception as e:
        print(e)
        print('The program is exiting...')
        sys.exit()

    criterion = create_losses(args.neg_ratio, NUM_CLASSES)

    steps_per_epoch = info['length'] // args.batch_size

    lr_fn = PiecewiseConstantDecay(boundaries=[
        int(steps_per_epoch * args.num_epochs * 2 / 3),
        int(steps_per_epoch * args.num_epochs * 5 / 6)
    ],
                                   values=[
                                       args.initial_lr, args.initial_lr * 0.1,
                                       args.initial_lr * 0.01
                                   ])

    optimizer = tf.keras.optimizers.SGD(learning_rate=lr_fn,
                                        momentum=args.momentum)

    train_log_dir = 'logs/train'
    val_log_dir = 'logs/val'
    train_summary_writer = tf.summary.create_file_writer(train_log_dir)
    val_summary_writer = tf.summary.create_file_writer(val_log_dir)

    for epoch in range(args.num_epochs):
        avg_loss = 0.0
        avg_conf_loss = 0.0
Ejemplo n.º 28
0
                     scale=scale,
                     subset="residual_sr",
                     noise_mean=noise_mean,
                     noise_sigma=noise_sigmas[3],
                     hr_shape=[64 * scale, 64 * scale],
                     hr_model="difference")

test_ds = test_ds.dataset(batch_size=1, random_transform=False)

# -----------------------
#       Trainer
# -----------------------
trainer_sr = residual_sr_trainer(
    model=residual_sr_v3(scale=scale),
    checkpoint_dir=f'.ckpt/residual_sr_{scale}_v3_difference_01',
    learning_rate=PiecewiseConstantDecay(boundaries=[150000],
                                         values=[2e-4, 1e-6]))

for lr, hr in test_ds.take(10):
    sr = trainer_sr.SR_return(lr)
    output = tf.image.resize(lr, [hr.shape[1], hr.shape[2]],
                             method=tf.image.ResizeMethod.BICUBIC)
    hr = hr + output
    output = output + sr
    for i in range(total_iter):
        # Location of model weights (needed for demo)
        weights_dir = f'weights/ircnn_denoise_{noise_sigmas[i] // 1}'
        weights_file = os.path.join(weights_dir, 'weights.h5')
        os.makedirs(weights_dir, exist_ok=True)

        # -----------------------
        #       Trainer
Ejemplo n.º 29
0
def train(model,
          train_dataset,
          test_dataset,
          epochs,
          patch_size,
          tensorboard_images,
          number_test_images=3):
    '''Training the model with the given datasets'''

    # Define filewriters for Tensorboard tracking.
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    train_loss_log_dir = 'logs/gradient_tape/' + current_time + '/train_loss'
    test_loss_log_dir = 'logs/gradient_tape/' + current_time + '/test_loss'
    psnr_log_dir = 'logs/gradient_tape/' + current_time + '/psnr'
    ssim_log_dir = 'logs/gradient_tape/' + current_time + '/ssim'
    img_log_dir = 'logs/gradient_tape/' + current_time + '/img'

    train_loss_summary_writer = tf.summary.create_file_writer(
        train_loss_log_dir)
    test_loss_summary_writer = tf.summary.create_file_writer(test_loss_log_dir)
    psnr_summary_writer = tf.summary.create_file_writer(psnr_log_dir)
    ssim_summary_writer = tf.summary.create_file_writer(ssim_log_dir)
    img_summary_writer = tf.summary.create_file_writer(img_log_dir)

    tf.keras.backend.clear_session()

    #get example images from dataset for tensorboard process tracking
    example_images = get_example_images(tensorboard_images, number_test_images,
                                        patch_size)

    # hyperparameters
    num_epochs = epochs
    learning_rate = 1e-4
    running_average_factor = 0.95

    # initialize L1 loss -> mean absolute error (we take the mean of the absolute difference between label and prediction)
    loss = tf.keras.losses.MeanAbsoluteError()

    # learning rate will be halved 4 times in the process
    optimizer = tf.keras.optimizers.Adam(learning_rate=PiecewiseConstantDecay(
        boundaries=[
            num_epochs // 5, (num_epochs // 5) * 2, (num_epochs // 5) * 3,
            (num_epochs // 5) * 4
        ],
        values=[
            learning_rate, (learning_rate) / 2, (learning_rate) / (2 * 2),
            (learning_rate) / (2 * 4), (learning_rate) / (2 * 8)
        ]),
                                         beta_1=0.9,
                                         beta_2=0.999)

    train_losses = []
    test_losses = []
    psnr_list = []
    ssim_list = []

    # test once before we start
    train_loss, _, _ = test(model, train_dataset, loss, patch_size)
    train_losses.append(train_loss)

    test_loss, psnr, ssim = test(model, test_dataset, loss, patch_size)
    test_losses.append(test_loss)
    psnr_list.append(psnr)
    ssim_list.append(ssim)

    # initialize time
    training_time = time.time()

    # train for num_epochs
    for epoch in range(num_epochs):
        epoch_time = time.time()

        running_average = 0
        for i, (input, target) in enumerate(train_dataset):
            train_loss = train_step(model, input, target, loss, optimizer,
                                    patch_size)
            running_average = running_average_factor * running_average + (
                1 - running_average_factor) * train_loss

        # append train losses
        train_losses.append(running_average)

        # testing
        test_loss, psnr, ssim = test(model, test_dataset, loss, patch_size)
        # append test losses
        test_losses.append(test_loss)
        psnr_list.append(psnr)
        ssim_list.append(ssim)

        with train_loss_summary_writer.as_default():
            tf.summary.scalar('loss', train_losses[-1], step=epoch)

        with test_loss_summary_writer.as_default():
            tf.summary.scalar('loss', test_losses[-1], step=epoch)

        with test_loss_summary_writer.as_default():
            tf.summary.scalar('psnr', psnr_list[-1], step=epoch)

        with test_loss_summary_writer.as_default():
            tf.summary.scalar('ssim', ssim_list[-1], step=epoch)

        # load produced images into Tensorboard
        pred_images = []

        for image in example_images:
            pred_images.append(model(tf.expand_dims(image, axis=0)))

        with img_summary_writer.as_default():
            tf.summary.image("upscaled images",
                             tf.squeeze(pred_images),
                             step=epoch,
                             max_outputs=number_test_images)

        print(
            f'Epoch {str(epoch)}: training loss = {running_average}, test loss = {test_loss}, psnr = {psnr}, ssim = {ssim}, time {timing(epoch_time)} seconds'
        )