Ejemplo n.º 1
0
  def from_session(cls, sess, input_tensors, output_tensors):
    """Creates a TFLiteConverter class from a TensorFlow Session.

    Args:
      sess: TensorFlow Session.
      input_tensors: List of input tensors. Type and shape are computed using
        `foo.shape` and `foo.dtype`.
      output_tensors: List of output tensors (only .name is used from this).

    Returns:
      TFLiteConverter class.
    """
    graph_def = _freeze_graph(sess, input_tensors, output_tensors)
    return cls(graph_def, input_tensors, output_tensors)
Ejemplo n.º 2
0
    def from_keras_model_file(cls,
                              model_file,
                              input_arrays=None,
                              input_shapes=None,
                              output_arrays=None,
                              custom_objects=None):
        """Creates a TFLiteConverter class from a tf.keras model file.

    Args:
      model_file: Full filepath of HDF5 file containing the tf.keras model.
      input_arrays: List of input tensors to freeze graph with. Uses input
        arrays from SignatureDef when none are provided. (default None)
      input_shapes: Dict of strings representing input tensor names to list of
        integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}).
        Automatically determined when input shapes is None (e.g., {"foo" :
          None}). (default None)
      output_arrays: List of output tensors to freeze graph with. Uses output
        arrays from SignatureDef when none are provided. (default None)
      custom_objects: Dict mapping names (strings) to custom classes or
        functions to be considered during model deserialization. (default None)

    Returns:
      TFLiteConverter class.
    """
        _keras.backend.clear_session()
        _keras.backend.set_learning_phase(False)
        keras_model = _keras.models.load_model(model_file, custom_objects)
        sess = _keras.backend.get_session()

        # Get input and output tensors.
        if input_arrays:
            input_tensors = _get_tensors_from_tensor_names(
                sess.graph, input_arrays)
        else:
            input_tensors = keras_model.inputs

        if output_arrays:
            output_tensors = _get_tensors_from_tensor_names(
                sess.graph, output_arrays)
        else:
            output_tensors = keras_model.outputs
        _set_tensor_shapes(input_tensors, input_shapes)

        graph_def = _freeze_graph(sess, input_tensors, output_tensors)
        return cls(graph_def, input_tensors, output_tensors)
Ejemplo n.º 3
0
  def from_keras_model_file(cls,
                            model_file,
                            input_arrays=None,
                            input_shapes=None,
                            output_arrays=None,
                            custom_objects=None):
    """Creates a TFLiteConverter class from a tf.keras model file.

    Args:
      model_file: Full filepath of HDF5 file containing the tf.keras model.
      input_arrays: List of input tensors to freeze graph with. Uses input
        arrays from SignatureDef when none are provided. (default None)
      input_shapes: Dict of strings representing input tensor names to list of
        integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}).
        Automatically determined when input shapes is None (e.g., {"foo" :
          None}). (default None)
      output_arrays: List of output tensors to freeze graph with. Uses output
        arrays from SignatureDef when none are provided. (default None)
      custom_objects: Dict mapping names (strings) to custom classes or
        functions to be considered during model deserialization. (default None)

    Returns:
      TFLiteConverter class.
    """
    _keras.backend.clear_session()
    _keras.backend.set_learning_phase(False)
    keras_model = _keras.models.load_model(model_file, custom_objects)
    sess = _keras.backend.get_session()

    # Get input and output tensors.
    if input_arrays:
      input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays)
    else:
      input_tensors = keras_model.inputs

    if output_arrays:
      output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays)
    else:
      output_tensors = keras_model.outputs
    _set_tensor_shapes(input_tensors, input_shapes)

    graph_def = _freeze_graph(sess, input_tensors, output_tensors)
    return cls(graph_def, input_tensors, output_tensors)
Ejemplo n.º 4
0
    def from_keras_model_file(cls,
                              model_file,
                              input_arrays=None,
                              input_shapes=None,
                              output_arrays=None,
                              custom_objects=None):
        """Creates a TFLiteConverter class from a tf.keras model file.

    Args:
      model_file: Full filepath of HDF5 file containing the tf.keras model.
      input_arrays: List of input tensors to freeze graph with. Uses input
        arrays from SignatureDef when none are provided. (default None)
      input_shapes: Dict of strings representing input tensor names to list of
        integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}).
        Automatically determined when input shapes is None (e.g., {"foo" :
          None}). (default None)
      output_arrays: List of output tensors to freeze graph with. Uses output
        arrays from SignatureDef when none are provided. (default None)
      custom_objects: Dict mapping names (strings) to custom classes or
        functions to be considered during model deserialization. (default None)

    Returns:
      TFLiteConverter class.
    """
        # Handles Keras when Eager mode is enabled.
        if context.executing_eagerly():
            if input_arrays or output_arrays:
                raise ValueError(
                    "`input_arrays` and `output_arrays` are unsupported "
                    "with Eager mode. If your model requires any of these "
                    "parameters, please use disable_eager_execution().")

            _keras.backend.set_learning_phase(False)
            keras_model = _keras.models.load_model(model_file, custom_objects)

            function = _saving_utils.trace_model_call(keras_model)
            concrete_func = function.get_concrete_function()

            frozen_func = _convert_to_constants.convert_variables_to_constants_v2(
                concrete_func, lower_control_flow=False)
            _set_tensor_shapes(frozen_func.inputs, input_shapes)
            return cls(frozen_func.graph.as_graph_def(),
                       frozen_func.inputs,
                       frozen_func.outputs,
                       experimental_debug_info_func=_build_debug_info_func(
                           frozen_func.graph))

        # Handles Keras when Eager mode is disabled.
        _keras.backend.clear_session()
        _keras.backend.set_learning_phase(False)
        keras_model = _keras.models.load_model(model_file, custom_objects)
        sess = _keras.backend.get_session()

        # Get input and output tensors.
        if input_arrays:
            input_tensors = _get_tensors_from_tensor_names(
                sess.graph, input_arrays)
        else:
            input_tensors = keras_model.inputs

        if output_arrays:
            output_tensors = _get_tensors_from_tensor_names(
                sess.graph, output_arrays)
        else:
            output_tensors = keras_model.outputs
        _set_tensor_shapes(input_tensors, input_shapes)

        graph_def = _freeze_graph(sess, input_tensors, output_tensors)
        return cls(graph_def,
                   input_tensors,
                   output_tensors,
                   experimental_debug_info_func=_build_debug_info_func(
                       sess.graph))
Ejemplo n.º 5
0
  def from_keras_model_file(cls,
                            model_file,
                            input_arrays=None,
                            input_shapes=None,
                            output_arrays=None,
                            custom_objects=None):
    """Creates a TFLiteConverter class from a tf.keras model file.

    Args:
      model_file: Full filepath of HDF5 file containing the tf.keras model.
      input_arrays: List of input tensors to freeze graph with. Uses input
        arrays from SignatureDef when none are provided. (default None)
      input_shapes: Dict of strings representing input tensor names to list of
        integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}).
        Automatically determined when input shapes is None (e.g., {"foo" :
          None}). (default None)
      output_arrays: List of output tensors to freeze graph with. Uses output
        arrays from SignatureDef when none are provided. (default None)
      custom_objects: Dict mapping names (strings) to custom classes or
        functions to be considered during model deserialization. (default None)

    Returns:
      TFLiteConverter class.
    """
    # Handles Keras when Eager mode is enabled.
    if context.executing_eagerly():
      if input_arrays or output_arrays:
        raise ValueError("`input_arrays` and `output_arrays` are unsupported "
                         "with Eager mode. If your model requires any of these "
                         "parameters, please use disable_eager_execution().")

      _keras.backend.set_learning_phase(False)
      keras_model = _keras.models.load_model(model_file, custom_objects)

      function = _saving_utils.trace_model_call(keras_model)
      concrete_func = function.get_concrete_function()

      frozen_func = _convert_to_constants.convert_variables_to_constants_v2(
          concrete_func)
      _set_tensor_shapes(frozen_func.inputs, input_shapes)
      return cls(frozen_func.graph.as_graph_def(), frozen_func.inputs,
                 frozen_func.outputs)

    # Handles Keras when Eager mode is disabled.
    _keras.backend.clear_session()
    _keras.backend.set_learning_phase(False)
    keras_model = _keras.models.load_model(model_file, custom_objects)
    sess = _keras.backend.get_session()

    # Get input and output tensors.
    if input_arrays:
      input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays)
    else:
      input_tensors = keras_model.inputs

    if output_arrays:
      output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays)
    else:
      output_tensors = keras_model.outputs
    _set_tensor_shapes(input_tensors, input_shapes)

    graph_def = _freeze_graph(sess, input_tensors, output_tensors)
    return cls(graph_def, input_tensors, output_tensors)