Ejemplo n.º 1
0
  def testFromScratch(self):
    n_classes = self._n_classes
    label = 1
    age = 17
    # For binary classifer:
    #   loss = sigmoid_cross_entropy(logits, label) where logits=0 (weights are
    #   all zero initially) and label = 1 so,
    #      loss = 1 * -log ( sigmoid(logits) ) = 0.69315
    # For multi class classifer:
    #   loss = cross_entropy(logits, label) where logits are all 0s (weights are
    #   all zero initially) and label = 1 so,
    #      loss = 1 * -log ( 1.0 / n_classes )
    # For this particular test case, as logits are same, the formular
    # 1 * -log ( 1.0 / n_classes ) covers both binary and multi class cases.
    mock_optimizer = self._mock_optimizer(
        expected_loss=-1 * math.log(1.0/n_classes))

    est = linear.LinearClassifier(
        feature_columns=(feature_column_lib.numeric_column('age'),),
        n_classes=n_classes,
        optimizer=mock_optimizer,
        model_dir=self._model_dir)
    self.assertEqual(0, mock_optimizer.minimize.call_count)

    # Train for a few steps, and validate optimizer and final checkpoint.
    num_steps = 10
    est.train(
        input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps)
    self.assertEqual(1, mock_optimizer.minimize.call_count)
    self._assert_checkpoint(
        expected_global_step=num_steps,
        expected_age_weight=[[0.]] if n_classes == 2 else [[0.] * n_classes],
        expected_bias=[0.] if n_classes == 2 else [.0] * n_classes)
Ejemplo n.º 2
0
    def testFromCheckpoint(self):
        # Create initial checkpoint.
        n_classes = self._n_classes
        label = 1
        age = 17
        # For binary case, the expected weight has shape (1,1). For multi class
        # case, the shape is (1, n_classes). In order to test the weights, set
        # weights as 2.0 * range(n_classes).
        age_weight = [[2.0]] if n_classes == 2 else (np.reshape(
            2.0 * np.array(list(range(n_classes)), dtype=np.float32),
            (1, n_classes)))
        bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes
        initial_global_step = 100
        with ops.Graph().as_default():
            variables.Variable(age_weight,
                               name=linear_testing_utils.AGE_WEIGHT_NAME)
            variables.Variable(bias, name=linear_testing_utils.BIAS_NAME)
            variables.Variable(initial_global_step,
                               name=ops.GraphKeys.GLOBAL_STEP,
                               dtype=dtypes.int64)
            linear_testing_utils.save_variables_to_ckpt(self._model_dir)

        # For binary classifer:
        #   logits = age * age_weight + bias = 17 * 2. - 35. = -1.
        #   loss = sigmoid_cross_entropy(logits, label)
        #   so, loss = 1 * -log ( sigmoid(-1) ) = 1.3133
        # For multi class classifer:
        #   loss = cross_entropy(logits, label)
        #   where logits = 17 * age_weight + bias and label = 1
        #   so, loss = 1 * -log ( soft_max(logits)[1] )
        if n_classes == 2:
            expected_loss = 1.3133
        else:
            logits = age_weight * age + bias
            logits_exp = np.exp(logits)
            softmax = logits_exp / logits_exp.sum()
            expected_loss = -1 * math.log(softmax[0, label])

        mock_optimizer = self._mock_optimizer(expected_loss=expected_loss)

        est = linear.LinearClassifier(
            feature_columns=(feature_column_lib.numeric_column('age'), ),
            n_classes=n_classes,
            optimizer=mock_optimizer,
            model_dir=self._model_dir)
        self.assertEqual(0, mock_optimizer.minimize.call_count)

        # Train for a few steps, and validate optimizer and final checkpoint.
        num_steps = 10
        est.train(input_fn=lambda: ({
            'age': ((age, ), )
        }, ((label, ), )),
                  steps=num_steps)
        self.assertEqual(1, mock_optimizer.minimize.call_count)
        self._assert_checkpoint(expected_global_step=initial_global_step +
                                num_steps,
                                expected_age_weight=age_weight,
                                expected_bias=bias)
Ejemplo n.º 3
0
  def test_should_error_out_for_not_recognized_args(self):
    estimator = linear.LinearClassifier([fc.numeric_column('x')])

    def metric_fn(features, not_recognized):
      _, _ = features, not_recognized
      return {}

    with self.assertRaisesRegexp(ValueError, 'not_recognized'):
      estimator = extenders.add_metrics(estimator, metric_fn)
Ejemplo n.º 4
0
  def test_all_args_are_optional(self):
    input_fn = get_input_fn(x=[[[0.]]], y=[[[1]]])
    estimator = linear.LinearClassifier([fc.numeric_column('x')])

    def metric_fn():
      return {'two': metrics_lib.mean(constant_op.constant([2.]))}

    estimator = extenders.add_metrics(estimator, metric_fn)

    estimator.train(input_fn=input_fn)
    metrics = estimator.evaluate(input_fn=input_fn)
    self.assertEqual(2., metrics['two'])
Ejemplo n.º 5
0
  def test_overrides_existing_metrics(self):
    input_fn = get_input_fn(x=[[[0.]]], y=[[[1]]])
    estimator = linear.LinearClassifier([fc.numeric_column('x')])
    estimator.train(input_fn=input_fn)
    metrics = estimator.evaluate(input_fn=input_fn)
    self.assertNotEqual(2., metrics['auc'])

    def metric_fn():
      return {'auc': metrics_lib.mean(constant_op.constant([2.]))}

    estimator = extenders.add_metrics(estimator, metric_fn)
    metrics = estimator.evaluate(input_fn=input_fn)
    self.assertEqual(2., metrics['auc'])
Ejemplo n.º 6
0
  def testFromScratchWithDefaultOptimizer(self):
    n_classes = self._n_classes
    label = 0
    age = 17
    est = linear.LinearClassifier(
        feature_columns=(feature_column_lib.numeric_column('age'),),
        n_classes=n_classes,
        model_dir=self._model_dir)

    # Train for a few steps, and validate final checkpoint.
    num_steps = 10
    est.train(
        input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps)
    self._assert_checkpoint(num_steps)
Ejemplo n.º 7
0
    def test_forward_in_exported_sparse(self):
        features_columns = [
            fc.indicator_column(
                fc.categorical_column_with_vocabulary_list('x', range(10)))
        ]

        classifier = linear.LinearClassifier(feature_columns=features_columns)

        def train_input_fn():
            dataset = dataset_ops.Dataset.from_tensors({
                'x':
                sparse_tensor.SparseTensor(values=[1, 2, 3],
                                           indices=[[0, 0], [1, 0], [1, 1]],
                                           dense_shape=[2, 2]),
                'labels': [[0], [1]]
            })

            def _split(x):
                labels = x.pop('labels')
                return x, labels

            dataset = dataset.map(_split)
            return dataset

        classifier.train(train_input_fn, max_steps=1)

        classifier = extenders.forward_features(classifier,
                                                keys=['x'],
                                                sparse_default_values={'x': 0})

        def serving_input_fn():
            features_ph = array_ops.placeholder(dtype=dtypes.int32,
                                                name='x',
                                                shape=[None])
            features = {'x': layers.dense_to_sparse(features_ph)}
            return estimator_lib.export.ServingInputReceiver(
                features, {'x': features_ph})

        export_dir, tmpdir = self._export_estimator(classifier,
                                                    serving_input_fn)
        prediction_fn = from_saved_model(export_dir,
                                         signature_def_key='predict')

        features = (0, 2)
        prediction = prediction_fn({'x': features})

        self.assertIn('x', prediction)
        self.assertEqual(features, tuple(prediction['x']))
        gfile.DeleteRecursively(tmpdir)
Ejemplo n.º 8
0
  def test_all_supported_args_in_different_order(self):
    input_fn = get_input_fn(x=[[[0.]]], y=[[[1]]])
    estimator = linear.LinearClassifier([fc.numeric_column('x')])

    def metric_fn(labels, config, features, predictions):
      self.assertIn('x', features)
      self.assertIsNotNone(labels)
      self.assertIn('logistic', predictions)
      self.assertTrue(isinstance(config, run_config.RunConfig))
      return {}

    estimator = extenders.add_metrics(estimator, metric_fn)

    estimator.train(input_fn=input_fn)
    estimator.evaluate(input_fn=input_fn)
Ejemplo n.º 9
0
  def test_should_add_metrics(self):
    input_fn = get_input_fn(
        x=np.arange(4)[:, None, None], y=np.ones(4)[:, None])
    estimator = linear.LinearClassifier([fc.numeric_column('x')])

    def metric_fn(features):
      return {'mean_x': metrics_lib.mean(features['x'])}

    estimator = extenders.add_metrics(estimator, metric_fn)

    estimator.train(input_fn=input_fn)
    metrics = estimator.evaluate(input_fn=input_fn)
    self.assertIn('mean_x', metrics)
    self.assertEqual(1.5, metrics['mean_x'])
    # assert that it keeps original estimators metrics
    self.assertIn('auc', metrics)
Ejemplo n.º 10
0
    def testTrainWithOneDimLabel(self):
        n_classes = self._n_classes
        batch_size = 20

        est = linear.LinearClassifier(
            feature_columns=(feature_column_lib.numeric_column('age'), ),
            n_classes=n_classes,
            model_dir=self._model_dir)
        data_rank_1 = np.array([0, 1])
        self.assertEqual((2, ), data_rank_1.shape)

        train_input_fn = numpy_io.numpy_input_fn(x={'age': data_rank_1},
                                                 y=data_rank_1,
                                                 batch_size=batch_size,
                                                 num_epochs=None,
                                                 shuffle=True)
        est.train(train_input_fn, steps=200)
        self._assert_checkpoint(200)
 def _LinearClassifier(self, feature_columns):
   # Can be used for baseline.
   return linear_estimator.LinearClassifier(
       n_classes=2, feature_columns=feature_columns)
Ejemplo n.º 12
0
def _linear_classifier_fn(*args, **kwargs):
    return linear.LinearClassifier(*args, **kwargs)
Ejemplo n.º 13
0
  def testFromCheckpointMultiBatch(self):
    # Create initial checkpoint.
    n_classes = self._n_classes
    label = [1, 0]
    age = [17, 18.5]
    # For binary case, the expected weight has shape (1,1). For multi class
    # case, the shape is (1, n_classes). In order to test the weights, set
    # weights as 2.0 * range(n_classes).
    age_weight = [[2.0]] if n_classes == 2 else (
        np.reshape(2.0 * np.array(list(range(n_classes)), dtype=np.float32),
                   (1, n_classes)))
    bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes
    initial_global_step = 100
    with ops.Graph().as_default():
      variables.Variable(age_weight, name=_AGE_WEIGHT_NAME)
      variables.Variable(bias, name=_BIAS_NAME)
      variables.Variable(
          initial_global_step, name=ops.GraphKeys.GLOBAL_STEP,
          dtype=dtypes.int64)
      _save_variables_to_ckpt(self._model_dir)

    # For binary classifer:
    #   logits = age * age_weight + bias
    #   logits[0] = 17 * 2. - 35. = -1.
    #   logits[1] = 18.5 * 2. - 35. = 2.
    #   loss = sigmoid_cross_entropy(logits, label)
    #   so, loss[0] = 1 * -log ( sigmoid(-1) ) = 1.3133
    #       loss[1] = (1 - 0) * -log ( 1- sigmoid(2) ) = 2.1269
    # For multi class classifer:
    #   loss = cross_entropy(logits, label)
    #   where logits = [17, 18.5] * age_weight + bias and label = [1, 0]
    #   so, loss = 1 * -log ( soft_max(logits)[label] )
    if n_classes == 2:
      expected_loss = (1.3133 + 2.1269)
    else:
      logits = age_weight * np.reshape(age, (2, 1)) + bias
      logits_exp = np.exp(logits)
      softmax_row_0 = logits_exp[0] / logits_exp[0].sum()
      softmax_row_1 = logits_exp[1] / logits_exp[1].sum()
      expected_loss_0 = -1 * math.log(softmax_row_0[label[0]])
      expected_loss_1 = -1 * math.log(softmax_row_1[label[1]])
      expected_loss = expected_loss_0 + expected_loss_1

    mock_optimizer = self._mock_optimizer(expected_loss=expected_loss)

    est = linear.LinearClassifier(
        feature_columns=(feature_column_lib.numeric_column('age'),),
        n_classes=n_classes,
        optimizer=mock_optimizer,
        model_dir=self._model_dir)
    self.assertEqual(0, mock_optimizer.minimize.call_count)

    # Train for a few steps, and validate optimizer and final checkpoint.
    num_steps = 10
    est.train(
        input_fn=lambda: ({'age': (age)}, (label)),
        steps=num_steps)
    self.assertEqual(1, mock_optimizer.minimize.call_count)
    self._assert_checkpoint(
        expected_global_step=initial_global_step + num_steps,
        expected_age_weight=age_weight,
        expected_bias=bias)