Ejemplo n.º 1
0
def ResNet101V2(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000):
    """Instantiates the ResNet101V2 architecture."""
    def stack_fn(x):
        x = resnet.stack2(x, 64, 3, name='conv2')
        x = resnet.stack2(x, 128, 4, name='conv3')
        x = resnet.stack2(x, 256, 23, name='conv4')
        return resnet.stack2(x, 512, 3, stride1=1, name='conv5')

    return resnet.ResNet(stack_fn, True, True, 'resnet101v2', include_top,
                         weights, input_tensor, input_shape, pooling, classes)
Ejemplo n.º 2
0
def ResNet50(include_top=True,
             weights=None,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             use_bias=False,
             block_fn=bottleneck_block,
             **kwargs):
    """Instantiates the ResNet50 architecture."""
    def stack_fn(x):
        x = stack(x,
                  64,
                  3,
                  block_fn=block_fn,
                  use_bias=use_bias,
                  stride1=1,
                  name='conv2')
        x = stack(x,
                  128,
                  4,
                  block_fn=block_fn,
                  use_bias=use_bias,
                  name='conv3')
        x = stack(x,
                  256,
                  6,
                  block_fn=block_fn,
                  use_bias=use_bias,
                  name='conv4')
        return stack(x,
                     512,
                     3,
                     block_fn=block_fn,
                     use_bias=use_bias,
                     name='conv5')

    return resnet.ResNet(stack_fn, False, use_bias, 'custom_resnet50',
                         include_top, weights, input_tensor, input_shape,
                         pooling, classes, **kwargs)