def benchmark_cnn_cifar10_bs_1024_gpu_2(self):
        """Measure performance with batch_size=1024, gpu=2 and

    distribution_strategy=`mirrored`.
    """
        batch_size = 1024
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.x_train,
            y=self.y_train,
            batch_size=batch_size,
            num_gpus=2,
            distribution_strategy='mirrored',
            epochs=self.epochs,
            optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0001,
                                                  decay=1e-6),
            loss='categorical_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'cnn', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
Ejemplo n.º 2
0
  def benchmark_antirectifier_bs_512(self):
    """Measure performance with batch_size=512."""
    batch_size = 512
    metrics, wall_time, extras = benchmark_util.measure_performance(
        self._build_model,
        x=self.x_train,
        y=self.y_train,
        batch_size=batch_size,
        optimizer="rmsprop",
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=["sparse_categorical_accuracy"])

    metadata = benchmark_util.get_keras_examples_metadata(
        "antirectifier", batch_size)
    extras.update(metadata)
    self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras)
  def benchmark_text_classification_bs_512(self):
    """Measure performance with batch_size=512."""
    batch_size = 512
    metrics, wall_time, extras = benchmark_util.measure_performance(
        self._build_model,
        x=self.imdb_x,
        y=self.imdb_y,
        batch_size=batch_size,
        optimizer='adam',
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])

    metadata = benchmark_util.get_keras_examples_metadata(
        'transformer', batch_size)
    extras.update(metadata)
    self.report_benchmark(wall_time=wall_time, metrics=metrics, extras=extras)
    def benchmark_hrnn_mnist_bs_1024(self):
        """Measure performance with batch_size=1024."""
        batch_size = 1024
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.x_train,
            y=self.y_train,
            batch_size=batch_size,
            optimizer='rmsprop',
            loss='categorical_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'hierarchical_rnn', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
    def benchmark_bidirect_lstm_imdb_bs_512(self):
        """Measure performance with batch_size=512."""
        batch_size = 512
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.imdb_x,
            y=self.imdb_y,
            batch_size=batch_size,
            optimizer='adam',
            loss='binary_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'bidirectional_lstm', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
Ejemplo n.º 6
0
    def benchmark_irnn_mnist_bs_512(self):
        """Measure performance with batch_size=512."""
        batch_size = 512
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.x_train,
            y=self.y_train,
            batch_size=batch_size,
            optimizer=tf.keras.optimizers.RMSprop(
                learning_rate=self.learning_rate),
            loss='categorical_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'irnn', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
Ejemplo n.º 7
0
    def benchmark_mlp_reuters_bs_256(self):
        """Measure performance with batch_size=256."""
        batch_size = 256
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.x_train,
            y=self.y_train,
            batch_size=batch_size,
            epochs=self.epochs,
            optimizer='adam',
            loss='categorical_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'mlp', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
  def benchmark_custom_training_mnist_bs_512(self):
    """Measure performance with batch_size=512 and run_iters=10."""
    batch_size = 512
    run_iters = 5
    train_dataset = self.train_dataset.shuffle(
        buffer_size=1024).batch(batch_size)

    # Instantiate a loss function.
    loss_fn = tf.keras.losses.CategoricalCrossentropy(
        reduction=tf.keras.losses.Reduction.NONE)
    # Instantiate an optimizer to train the model.
    optimizer = tf.keras.optimizers.Adam()
    model = self._build_model()

    metrics, wall_time = self.measure_performance(model, train_dataset, loss_fn,
                                                  optimizer, batch_size,
                                                  run_iters, self.epochs)
    extras = benchmark_util.get_keras_examples_metadata('conv', batch_size,
                                                        '.keras.ctl_graph')
    self.report_benchmark(
        iters=run_iters, wall_time=wall_time, metrics=metrics, extras=extras)
    def benchmark_custom_training_mnist_bs_512_gpu_2(self):
        """Measure performance with batch_size=512, run_iters=10, gpu=2 and

    distribution_strategy='mirrored'.
    """
        batch_size = 512
        run_iters = 10
        train_dataset = self.train_dataset.shuffle(
            buffer_size=1024).batch(batch_size)

        distribution_strategy = 'mirrored'

        strategy = distribution_util.get_distribution_strategy(
            distribution_strategy=distribution_strategy, num_gpus=2)

        if distribution_strategy != 'off':
            train_dataset = strategy.experimental_distribute_dataset(
                train_dataset)

        strategy_scope = distribution_util.get_strategy_scope(strategy)

        with strategy_scope:
            # Instantiate a loss function.
            loss_fn = tf.keras.losses.CategoricalCrossentropy(
                reduction=tf.keras.losses.Reduction.NONE)
            # Instantiate an optimizer to train the model.
            optimizer = tf.keras.optimizers.Adam()
            model = self._build_model()

        metrics, wall_time = self.measure_performance(model, train_dataset,
                                                      loss_fn, optimizer,
                                                      batch_size, run_iters,
                                                      self.epochs, strategy)
        extras = benchmark_util.get_keras_examples_metadata(
            'conv', batch_size, '.keras.ctl_graph')
        self.report_benchmark(iters=run_iters,
                              wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)
Ejemplo n.º 10
0
    def benchmark_mlp_reuters_bs_512_gpu_2(self):
        """Measure performance with batch_size=512, gpu=2 and

    distribution_strategy='mirrored'
    """
        batch_size = 512
        metrics, wall_time, extras = benchmark_util.measure_performance(
            self._build_model,
            x=self.x_train,
            y=self.y_train,
            batch_size=batch_size,
            num_gpus=2,
            distribution_strategy='mirrored',
            epochs=self.epochs,
            optimizer='adam',
            loss='categorical_crossentropy',
            metrics=['accuracy'])

        metadata = benchmark_util.get_keras_examples_metadata(
            'mlp', batch_size)
        extras.update(metadata)
        self.report_benchmark(wall_time=wall_time,
                              metrics=metrics,
                              extras=extras)