Ejemplo n.º 1
0
 def testBeyondEnd(self, serialize):
     step = 15
     lr = 0.05
     end_lr = 0.001
     decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr)
     decayed_lr = _maybe_serialized(decayed_lr, serialize)
     expected = end_lr
     self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
Ejemplo n.º 2
0
 def testHalfWayWithEnd(self, serialize):
     step = 5
     lr = 0.05
     end_lr = 0.001
     decayed_lr = learning_rate_schedule.PolynomialDecay(lr, 10, end_lr)
     decayed_lr = _maybe_serialized(decayed_lr, serialize)
     expected = (lr + end_lr) * 0.5
     self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
 def testBeginWithCycle(self, serialize):
   lr = 0.001
   decay_steps = 10
   step = 0
   decayed_lr = learning_rate_schedule.PolynomialDecay(
       lr, decay_steps, cycle=True)
   decayed_lr = _maybe_serialized(decayed_lr, serialize)
   expected = lr
   self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
 def testBeyondEndWithCycle(self, serialize):
   step = 15
   lr = 0.05
   end_lr = 0.001
   power = 0.5
   decayed_lr = learning_rate_schedule.PolynomialDecay(
       lr, 10, end_lr, power=power, cycle=True)
   decayed_lr = _maybe_serialized(decayed_lr, serialize)
   expected = (lr - end_lr) * 0.25**power + end_lr
   self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
 def testHalfWay(self, serialize):
   step = 5
   lr = 0.05
   end_lr = 0.0
   power = 0.5
   decayed_lr = learning_rate_schedule.PolynomialDecay(
       lr, 10, end_lr, power=power)
   decayed_lr = _maybe_serialized(decayed_lr, serialize)
   expected = lr * 0.5**power
   self.assertAllClose(self.evaluate(decayed_lr(step)), expected, 1e-6)
Ejemplo n.º 6
0
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False,
                     name=None):
    """Applies a polynomial decay to the learning rate.

  It is commonly observed that a monotonically decreasing learning rate, whose
  degree of change is carefully chosen, results in a better performing model.
  This function applies a polynomial decay function to a provided initial
  `learning_rate` to reach an `end_learning_rate` in the given `decay_steps`.

  It requires a `global_step` value to compute the decayed learning rate.  You
  can just pass a TensorFlow variable that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  global_step = min(global_step, decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  If `cycle` is True then a multiple of `decay_steps` is used, the first one
  that is bigger than `global_steps`.

  ```python
  decay_steps = decay_steps * ceil(global_step / decay_steps)
  decayed_learning_rate = (learning_rate - end_learning_rate) *
                          (1 - global_step / decay_steps) ^ (power) +
                          end_learning_rate

  ```

  Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  starter_learning_rate = 0.1
  end_learning_rate = 0.01
  decay_steps = 10000
  learning_rate = tf.compat.v1.train.polynomial_decay(starter_learning_rate,
  global_step,
                                            decay_steps, end_learning_rate,
                                            power=0.5)
  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The initial learning rate.
    global_step: A scalar `int32` or `int64` `Tensor` or a Python number. Global
      step to use for the decay computation.  Must not be negative.
    decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number. Must
      be positive.  See the decay computation above.
    end_learning_rate: A scalar `float32` or `float64` `Tensor` or a Python
      number.  The minimal end learning rate.
    power: A scalar `float32` or `float64` `Tensor` or a Python number.  The
      power of the polynomial. Defaults to linear, 1.0.
    cycle: A boolean, whether or not it should cycle beyond decay_steps.
    name: String.  Optional name of the operation. Defaults to
      'PolynomialDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    decayed_lr = learning_rate_schedule.PolynomialDecay(
        learning_rate,
        decay_steps,
        end_learning_rate=end_learning_rate,
        power=power,
        cycle=cycle,
        name=name)

    if not context.executing_eagerly():
        decayed_lr = decayed_lr(global_step)
    else:
        decayed_lr = functools.partial(decayed_lr, global_step)
    return decayed_lr