Ejemplo n.º 1
0
    def GraphFn(self, x1, x2):
        x = x1
        q = math_ops.abs(x)
        q = q + 1.0
        q = gen_math_ops.exp(q)
        q = gen_math_ops.log(q)
        q = array_ops.squeeze(q, axis=-2)
        q = math_ops.abs(q)
        q = q + 2.2
        q = gen_math_ops.sqrt(q)
        q = gen_math_ops.rsqrt(q)
        q = math_ops.negative(q)
        q = array_ops.squeeze(q, axis=3)
        q = math_ops.abs(q)
        q = q + 3.0
        a = gen_math_ops.reciprocal(q)

        # this chain of operations has a batch size of 5, which is different from
        # the batch size for the other operations.
        x = constant_op.constant(np.random.randn(5, 8, 12), dtype=x.dtype)
        q = math_ops.abs(x)
        q = q + 2.0
        q = gen_math_ops.exp(q)
        q = gen_math_ops.log(q)
        q = math_ops.abs(q)
        q = q + 2.1
        q = gen_math_ops.sqrt(q)
        q = gen_math_ops.rsqrt(q)
        q = math_ops.negative(q)
        q = math_ops.abs(q)
        q = q + 4.0
        b = gen_math_ops.reciprocal(q)

        # TODO(jie): this one will break, broadcasting on batch.
        x = x2
        q = math_ops.abs(x)
        q = q + 5.0
        q = gen_math_ops.exp(q)
        q = array_ops.squeeze(q, axis=[-1, -2, 3])
        q = gen_math_ops.log(q)
        q = math_ops.abs(q)
        q = q + 5.1
        q = gen_array_ops.reshape(q, [12, 5, 1, 1, 8, 1, 12])
        q = array_ops.squeeze(q, axis=[5, 2, 3])
        q = gen_math_ops.sqrt(q)
        q = math_ops.abs(q)
        q = q + 5.2
        q = gen_math_ops.rsqrt(q)
        q = math_ops.negative(q)
        q = math_ops.abs(q)
        q = q + 5.3
        c = gen_math_ops.reciprocal(q)

        q = a * b
        q = q / c
        return array_ops.squeeze(q, name="output_0")
Ejemplo n.º 2
0
def minimize_clipped(optimizer,
                     loss,
                     clip_value,
                     return_gvs=False,
                     soft=False,
                     **kwargs):
    """Computes a train_op with clipped gradients in the range [-clip_value, clip_value]

    :param optimizer: Tensorflow optimizer object
    :param loss: tensor
    :param clip_value: scalar value
    :param return_gvs: returns list of tuples of (gradient, parameter) for trainable variables
    :param kwargs: kwargs for optimizer.compute_gradients function
    :return: train_step
    """

    gvs = optimizer.compute_gradients(loss, **kwargs)
    clipped_gvs = [(g, v) for (g, v) in gvs if g is not None]

    if not soft:
        clipped_gvs = [(tf.clip_by_value(g, -clip_value, clip_value), v)
                       for (g, v) in clipped_gvs]

    else:
        n_elems = 0
        norm_squared = 0.
        for g, v in gvs:
            n_elems += tf.reduce_prod(tf.shape(g))
            norm_squared += tf.reduce_sum(g**2)

        norm_squared /= tf.to_float(n_elems)
        inv_norm = gen_math_ops.rsqrt(norm_squared)
        cond = tf.greater(norm_squared, clip_value**2)

        def clip(x):
            return tf.cond(cond, lambda: clip_value * x * inv_norm, lambda: x)

        clipped_gvs = [(clip(g), v) for (g, v) in clipped_gvs]

    train_step = optimizer.apply_gradients(clipped_gvs)

    if return_gvs:
        train_step = (train_step, gvs)
    return train_step
  def GetParams(self):
    """Test for unary operations in TF-TRT."""
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [12, 5, 8, 1, 1, 12]
    output_name = "output"
    input2_name = "input_2"
    input2_dims = [12, 5, 8, 1, 12, 1, 1]
    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
      q = math_ops.abs(x)
      q = q + 1.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = array_ops.squeeze(q, axis=-2)
      q = math_ops.abs(q)
      q = q + 2.2
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = array_ops.squeeze(q, axis=3)
      q = math_ops.abs(q)
      q = q + 3.0
      a = gen_math_ops.reciprocal(q)

      x = constant_op.constant(np.random.randn(5, 8, 12), dtype=dtype)
      q = math_ops.abs(x)
      q = q + 2.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 2.1
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 4.0
      b = gen_math_ops.reciprocal(q)

      # TODO(jie): this one will break, broadcasting on batch.
      x = array_ops.placeholder(
          dtype=dtype, shape=input2_dims, name=input2_name)
      q = math_ops.abs(x)
      q = q + 5.0
      q = gen_math_ops.exp(q)
      q = array_ops.squeeze(q, axis=[-1, -2, 3])
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 5.1
      q = gen_array_ops.reshape(q, [12, 5, 1, 1, 8, 1, 12])
      q = array_ops.squeeze(q, axis=[5, 2, 3])
      q = gen_math_ops.sqrt(q)
      q = math_ops.abs(q)
      q = q + 5.2
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 5.3
      c = gen_math_ops.reciprocal(q)

      q = a * b
      q = q / c
      array_ops.squeeze(q, name=output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name, input2_name],
        input_dims=[input_dims, input2_dims],
        output_names=[output_name],
        expected_output_dims=[(12, 5, 8, 12)])
Ejemplo n.º 4
0
  def GetParams(self):
    """Test for unary operations in TF-TRT."""
    dtype = dtypes.float32
    input_name = "input"
    input_dims = [12, 5, 8, 1, 1, 12]
    input2_name = "input_2"
    input2_dims = [12, 5, 8, 1, 12, 1, 1]
    g = ops.Graph()
    with g.as_default():
      x = array_ops.placeholder(dtype=dtype, shape=input_dims, name=input_name)
      q = math_ops.abs(x)
      q = q + 1.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = array_ops.squeeze(q, axis=-2)
      q = math_ops.abs(q)
      q = q + 2.2
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = array_ops.squeeze(q, axis=3)
      q = math_ops.abs(q)
      q = q + 3.0
      a = gen_math_ops.reciprocal(q)

      x = constant_op.constant(np.random.randn(5, 8, 12), dtype=dtype)
      q = math_ops.abs(x)
      q = q + 2.0
      q = gen_math_ops.exp(q)
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 2.1
      q = gen_math_ops.sqrt(q)
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 4.0
      b = gen_math_ops.reciprocal(q)

      # TODO(jie): this one will break, broadcasting on batch.
      x = array_ops.placeholder(
          dtype=dtype, shape=input2_dims, name=input2_name)
      q = math_ops.abs(x)
      q = q + 5.0
      q = gen_math_ops.exp(q)
      q = array_ops.squeeze(q, axis=[-1, -2, 3])
      q = gen_math_ops.log(q)
      q = math_ops.abs(q)
      q = q + 5.1
      q = gen_array_ops.reshape(q, [12, 5, 1, 1, 8, 1, 12])
      q = array_ops.squeeze(q, axis=[5, 2, 3])
      q = gen_math_ops.sqrt(q)
      q = math_ops.abs(q)
      q = q + 5.2
      q = gen_math_ops.rsqrt(q)
      q = math_ops.negative(q)
      q = math_ops.abs(q)
      q = q + 5.3
      c = gen_math_ops.reciprocal(q)

      q = a * b
      q = q / c
      array_ops.squeeze(q, name=self.output_name)
    return trt_test.TfTrtIntegrationTestParams(
        gdef=g.as_graph_def(),
        input_names=[input_name, input2_name],
        input_dims=[input_dims, input2_dims],
        num_expected_engines=5,
        expected_output_dims=(12, 5, 8, 12),
        allclose_atol=1.e-03,
        allclose_rtol=1.e-03)