Ejemplo n.º 1
0
 def test_sparse_bincount_col_reduce_binary(self, dtype):
     num_rows = 128
     num_cols = 27
     size = 100
     np.random.seed(42)
     inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
     np_out = np.reshape(
         np.concatenate([
             np.where(np.bincount(inp[j, :], minlength=size) > 0, 1, 0)
             for j in range(num_rows)
         ],
                        axis=0), (num_rows, size))
     # from_dense will filter out 0s.
     inp = inp + 1
     # from_dense will cause OOM in GPU.
     with ops.device("/CPU:0"):
         inp_sparse = sparse_ops.from_dense(inp)
     self.assertAllEqual(
         np_out,
         self.evaluate(
             gen_math_ops.sparse_bincount(
                 indices=inp_sparse.indices,
                 values=inp_sparse.values - 1,
                 dense_shape=inp_sparse.dense_shape,
                 size=size,
                 weights=[],
                 binary_output=True)))
Ejemplo n.º 2
0
 def test_size_is_not_scalar(self):  # b/206619828
     with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),
                                 "Shape must be rank 0 but is rank 1"):
         self.evaluate(
             gen_math_ops.sparse_bincount(indices=[[0], [1]],
                                          values=[0, 0],
                                          dense_shape=[1, 1],
                                          size=[1, 1],
                                          weights=[0, 0],
                                          binary_output=False))
Ejemplo n.º 3
0
    def test_sparse_bincount_all_count(self, dtype):
        np.random.seed(42)
        num_rows = 128
        size = 1000
        n_elems = 4096
        inp_indices = np.random.randint(0, num_rows, (n_elems, ))
        inp_vals = np.random.randint(0, size, (n_elems, ), dtype=dtype)

        np_out = np.bincount(inp_vals, minlength=size)
        self.assertAllEqual(
            np_out,
            self.evaluate(
                gen_math_ops.sparse_bincount(indices=inp_indices,
                                             values=inp_vals,
                                             dense_shape=[num_rows],
                                             size=size,
                                             weights=[])))
Ejemplo n.º 4
0
    def test_sparse_bincount_all_binary_weights(self, dtype):
        np.random.seed(42)
        num_rows = 128
        size = 10
        n_elems = 4096
        inp_indices = np.random.randint(0, num_rows, (n_elems, ))
        inp_vals = np.random.randint(0, size, (n_elems, ), dtype=dtype)
        inp_weight = np.random.random((n_elems, ))

        np_out = np.ones((size, ))
        self.assertAllEqual(
            np_out,
            self.evaluate(
                gen_math_ops.sparse_bincount(indices=inp_indices,
                                             values=inp_vals,
                                             dense_shape=[num_rows],
                                             size=size,
                                             weights=inp_weight,
                                             binary_output=True)))
Ejemplo n.º 5
0
  def test_sparse_bincount_input_validation(self):
    np.random.seed(42)
    num_rows = 128
    size = 1000
    n_elems = 4096
    inp_indices = np.random.randint(0, num_rows, (n_elems, 1))
    inp_vals = np.random.randint(0, size, (n_elems,))

    # Insert negative index.
    inp_indices[10, 0] = -2

    with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),
                                "out of bounds"):
      self.evaluate(
          gen_math_ops.sparse_bincount(
              indices=inp_indices,
              values=inp_vals,
              dense_shape=[num_rows],
              size=size,
              weights=[]))
Ejemplo n.º 6
0
def bincount(arr,
             weights=None,
             minlength=None,
             maxlength=None,
             dtype=dtypes.int32,
             name=None,
             axis=None,
             binary_output=False):
    """Counts the number of occurrences of each value in an integer array.

  If `minlength` and `maxlength` are not given, returns a vector with length
  `tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.
  If `weights` are non-None, then index `i` of the output stores the sum of the
  value in `weights` at each index where the corresponding value in `arr` is
  `i`.

  ```python
  values = tf.constant([1,1,2,3,2,4,4,5])
  tf.math.bincount(values) #[0 2 2 1 2 1]
  ```
  Vector length = Maximum element in vector `values` is 5. Adding 1, which is 6
                  will be the vector length.

  Each bin value in the output indicates number of occurrences of the particular
  index. Here, index 1 in output has a value 2. This indicates value 1 occurs
  two times in `values`.

  ```python
  values = tf.constant([1,1,2,3,2,4,4,5])
  weights = tf.constant([1,5,0,1,0,5,4,5])
  tf.math.bincount(values, weights=weights) #[0 6 0 1 9 5]
  ```
  Bin will be incremented by the corresponding weight instead of 1.
  Here, index 1 in output has a value 6. This is the summation of weights
  corresponding to the value in `values`.

  **Bin-counting on a certain axis**

  This example takes a 2 dimensional input and returns a `Tensor` with
  bincounting on each sample.

  >>> data = np.array([[1, 2, 3, 0], [0, 0, 1, 2]], dtype=np.int32)
  >>> tf.math.bincount(data, axis=-1)
  <tf.Tensor: shape=(2, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [2, 1, 1, 0]], dtype=int32)>


  **Bin-counting with binary_output**

  This example gives binary output instead of counting the occurrence.

  >>> data = np.array([[1, 2, 3, 0], [0, 0, 1, 2]], dtype=np.int32)
  >>> tf.math.bincount(data, axis=-1, binary_output=True)
  <tf.Tensor: shape=(2, 4), dtype=int32, numpy=
    array([[1, 1, 1, 1],
           [1, 1, 1, 0]], dtype=int32)>

  Args:
    arr: A Tensor, RaggedTensor, or SparseTensor whose values should be counted.
      These tensors must have a rank of 2 if `axis=-1`.
    weights: If non-None, must be the same shape as arr. For each value in
      `arr`, the bin will be incremented by the corresponding weight instead of
      1.
    minlength: If given, ensures the output has length at least `minlength`,
      padding with zeros at the end if necessary.
    maxlength: If given, skips values in `arr` that are equal or greater than
      `maxlength`, ensuring that the output has length at most `maxlength`.
    dtype: If `weights` is None, determines the type of the output bins.
    name: A name scope for the associated operations (optional).
    axis: The axis to slice over. Axes at and below `axis` will be flattened
      before bin counting. Currently, only `0`, and `-1` are supported. If None,
      all axes will be flattened (identical to passing `0`).
    binary_output: If True, this op will output 1 instead of the number of times
      a token appears (equivalent to one_hot + reduce_any instead of one_hot +
      reduce_add). Defaults to False.

  Returns:
    A vector with the same dtype as `weights` or the given `dtype`. The bin
    values.

  Raises:
    `InvalidArgumentError` if negative values are provided as an input.

  """
    name = "bincount" if name is None else name
    with ops.name_scope(name):
        # Somehow forward compatible needs to be False.
        if not binary_output and axis is None:
            arr = ops.convert_to_tensor(arr, name="arr", dtype=dtypes.int32)
            array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0
            output_size = math_ops.cast(array_is_nonempty, dtypes.int32) * (
                math_ops.reduce_max(arr) + 1)
            if minlength is not None:
                minlength = ops.convert_to_tensor(minlength,
                                                  name="minlength",
                                                  dtype=dtypes.int32)
                output_size = gen_math_ops.maximum(minlength, output_size)
            if maxlength is not None:
                maxlength = ops.convert_to_tensor(maxlength,
                                                  name="maxlength",
                                                  dtype=dtypes.int32)
                output_size = gen_math_ops.minimum(maxlength, output_size)
            if weights is not None:
                weights = ops.convert_to_tensor(weights, name="weights")
                return gen_math_ops.unsorted_segment_sum(
                    weights, arr, output_size)
            weights = constant_op.constant([], dtype)
            arr = array_ops.reshape(arr, [-1])
            return gen_math_ops.bincount(arr, output_size, weights)

        if not isinstance(arr, sparse_tensor.SparseTensor):
            arr = ragged_tensor.convert_to_tensor_or_ragged_tensor(arr,
                                                                   name="arr")
        if weights is not None:
            if not isinstance(weights, sparse_tensor.SparseTensor):
                weights = ragged_tensor.convert_to_tensor_or_ragged_tensor(
                    weights, name="weights")

        if weights is not None and binary_output:
            raise ValueError(
                "Arguments `binary_output` and `weights` are mutually "
                "exclusive. Please specify only one.")

        if not arr.dtype.is_integer:
            arr = math_ops.cast(arr, dtypes.int32)
        if axis is None:
            axis = 0

        if axis not in [0, -1]:
            raise ValueError(
                f"Unsupported value for argument axis={axis}. Only 0 and"
                " -1 are currently supported.")

        if isinstance(arr, ragged_tensor.RaggedTensor):
            array_is_nonempty = math_ops.reduce_prod(
                array_ops.shape(arr.values)) > 0
        else:
            array_is_nonempty = math_ops.reduce_prod(array_ops.shape(arr)) > 0
        if isinstance(arr, sparse_tensor.SparseTensor):
            output_size = math_ops.cast(array_is_nonempty, arr.dtype) * (
                math_ops.reduce_max(arr.values) + 1)
        else:
            output_size = math_ops.cast(
                array_is_nonempty, arr.dtype) * (math_ops.reduce_max(arr) + 1)
        if minlength is not None:
            minlength = ops.convert_to_tensor(minlength,
                                              name="minlength",
                                              dtype=arr.dtype)
            output_size = gen_math_ops.maximum(minlength, output_size)
        if maxlength is not None:
            maxlength = ops.convert_to_tensor(maxlength,
                                              name="maxlength",
                                              dtype=arr.dtype)
            output_size = gen_math_ops.minimum(maxlength, output_size)

        if axis == 0:
            if isinstance(arr, sparse_tensor.SparseTensor):
                if weights is not None:
                    weights = validate_sparse_weights(arr, weights, dtype)
                arr = arr.values
            elif isinstance(arr, ragged_tensor.RaggedTensor):
                if weights is not None:
                    weights = validate_ragged_weights(arr, weights, dtype)
                arr = arr.values
            else:
                if weights is not None:
                    weights = array_ops.reshape(weights, [-1])
                arr = array_ops.reshape(arr, [-1])

        if isinstance(arr, sparse_tensor.SparseTensor):
            weights = validate_sparse_weights(arr, weights, dtype)
            return gen_math_ops.sparse_bincount(indices=arr.indices,
                                                values=arr.values,
                                                dense_shape=arr.dense_shape,
                                                size=output_size,
                                                weights=weights,
                                                binary_output=binary_output)
        elif isinstance(arr, ragged_tensor.RaggedTensor):
            weights = validate_ragged_weights(arr, weights, dtype)
            return gen_math_ops.ragged_bincount(splits=arr.row_splits,
                                                values=arr.values,
                                                size=output_size,
                                                weights=weights,
                                                binary_output=binary_output)
        else:
            weights = validate_dense_weights(arr, weights, dtype)
            return gen_math_ops.dense_bincount(input=arr,
                                               size=output_size,
                                               weights=weights,
                                               binary_output=binary_output)