Ejemplo n.º 1
0
def decode_raw(input_bytes,
               out_type,
               little_endian=True,
               fixed_length=None,
               name=None):
    """Convert raw byte strings into tensors.

  Args:
    input_bytes:
      Each element of the input Tensor is converted to an array of bytes.
    out_type:
      `DType` of the output. Acceptable types are `half`, `float`, `double`,
      `int32`, `uint16`, `uint8`, `int16`, `int8`, `int64`.
    little_endian:
      Whether the `input_bytes` data is in little-endian format. Data will be
      converted into host byte order if necessary.
    fixed_length:
      If set, the first `fixed_length` bytes of each element will be converted.
      Data will be zero-padded or truncated to the specified length.

      `fixed_length` must be a multiple of the size of `out_type`.
      `fixed_length` must be specified if the elements of `input_bytes` are of
      variable length.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` object storing the decoded bytes.

  """
    if fixed_length is not None:
        return gen_parsing_ops.decode_padded_raw(input_bytes,
                                                 fixed_length=fixed_length,
                                                 out_type=out_type,
                                                 little_endian=little_endian,
                                                 name=name)
    else:
        return gen_parsing_ops.decode_raw(input_bytes,
                                          out_type,
                                          little_endian=little_endian,
                                          name=name)
Ejemplo n.º 2
0
def decode_raw_v1(
        input_bytes=None,
        out_type=None,
        little_endian=True,
        name=None,
        bytes=None  # pylint: disable=redefined-builtin
):
    """Convert raw byte strings into tensors.

  Args:
    input_bytes:
      Each element of the input Tensor is converted to an array of bytes.
    out_type:
      `DType` of the output. Acceptable types are `half`, `float`, `double`,
      `int32`, `uint16`, `uint8`, `int16`, `int8`, `int64`.
    little_endian:
      Whether the `input_bytes` data is in little-endian format. Data will be
      converted into host byte order if necessary.
    name: A name for the operation (optional).
    bytes: Deprecated parameter. Use `input_bytes` instead.

  Returns:
    A `Tensor` object storing the decoded bytes.
  """
    input_bytes = deprecation.deprecated_argument_lookup(
        "input_bytes", input_bytes, "bytes", bytes)

    # out_type is a required positional argument in the original API, and had to
    # be changed to a keyword argument in order to facilitate the transition from
    # the reserved named `bytes` to `input_bytes`. Ensure it's still set.
    if out_type is None:
        raise ValueError(
            "decode_raw_v1() missing 1 positional argument: 'out_type'")

    return gen_parsing_ops.decode_raw(input_bytes,
                                      out_type,
                                      little_endian=little_endian,
                                      name=name)
Ejemplo n.º 3
0
def decode_raw(input_bytes,
               out_type,
               little_endian=True,
               fixed_length=None,
               name=None):
    r"""Convert raw bytes from input tensor into numeric tensors.

  The input tensor is interpreted as a sequence of bytes. These bytes are then
  decoded as numbers in the format specified by `out_type`.

  >>> tf.io.decode_raw(tf.constant("1"), tf.uint8)
  <tf.Tensor: shape=(1,), dtype=uint8, numpy=array([49], dtype=uint8)>
  >>> tf.io.decode_raw(tf.constant("1,2"), tf.uint8)
  <tf.Tensor: shape=(3,), dtype=uint8, numpy=array([49, 44, 50], dtype=uint8)>

  Note that the rank of the output tensor is always one more than the input one:

  >>> tf.io.decode_raw(tf.constant(["1","2"]), tf.uint8).shape
  TensorShape([2, 1])
  >>> tf.io.decode_raw(tf.constant([["1"],["2"]]), tf.uint8).shape
  TensorShape([2, 1, 1])

  This is because each byte in the input is converted to a new value on the
  output (if output type is `uint8` or `int8`, otherwise chunks of inputs get
  coverted to a new value):

  >>> tf.io.decode_raw(tf.constant("123"), tf.uint8)
  <tf.Tensor: shape=(3,), dtype=uint8, numpy=array([49, 50, 51], dtype=uint8)>
  >>> tf.io.decode_raw(tf.constant("1234"), tf.uint8)
  <tf.Tensor: shape=(4,), dtype=uint8, numpy=array([49, 50, 51, 52], ...
  >>> # chuncked output
  >>> tf.io.decode_raw(tf.constant("12"), tf.uint16)
  <tf.Tensor: shape=(1,), dtype=uint16, numpy=array([12849], dtype=uint16)>
  >>> tf.io.decode_raw(tf.constant("1234"), tf.uint16)
  <tf.Tensor: shape=(2,), dtype=uint16, numpy=array([12849, 13363], ...
  >>> # int64 output
  >>> tf.io.decode_raw(tf.constant("12345678"), tf.int64)
  <tf.Tensor: ... numpy=array([4050765991979987505])>
  >>> tf.io.decode_raw(tf.constant("1234567887654321"), tf.int64)
  <tf.Tensor: ... numpy=array([4050765991979987505, 3544952156018063160])>

  The operation allows specifying endianness via the `little_endian` parameter.

  >>> tf.io.decode_raw(tf.constant("\x0a\x0b"), tf.int16)
  <tf.Tensor: shape=(1,), dtype=int16, numpy=array([2826], dtype=int16)>
  >>> hex(2826)
  '0xb0a'
  >>> tf.io.decode_raw(tf.constant("\x0a\x0b"), tf.int16, little_endian=False)
  <tf.Tensor: shape=(1,), dtype=int16, numpy=array([2571], dtype=int16)>
  >>> hex(2571)
  '0xa0b'

  If the elements of `input_bytes` are of different length, you must specify
  `fixed_length`:

  >>> tf.io.decode_raw(tf.constant([["1"],["23"]]), tf.uint8, fixed_length=4)
  <tf.Tensor: shape=(2, 1, 4), dtype=uint8, numpy=
  array([[[49,  0,  0,  0]],
         [[50, 51,  0,  0]]], dtype=uint8)>

  If the `fixed_length` value is larger that the length of the `out_type` dtype,
  multiple values are generated:

  >>> tf.io.decode_raw(tf.constant(["1212"]), tf.uint16, fixed_length=4)
  <tf.Tensor: shape=(1, 2), dtype=uint16, numpy=array([[12849, 12849]], ...

  Note: There is currently a bug in `fixed_length` that can result in data loss:

  >>> # truncated to length of type as it matches fixed_length
  >>> tf.io.decode_raw(tf.constant(["1212"]), tf.uint16, fixed_length=2)
  <tf.Tensor: shape=(1, 1), dtype=uint16, numpy=array([[12849]], dtype=uint16)>
  >>> # ignores the second component
  >>> tf.io.decode_raw(tf.constant(["12","34"]), tf.uint16, fixed_length=2)
  <tf.Tensor: shape=(2, 1), dtype=uint16, numpy=
  array([[12849],
         [    0]], dtype=uint16)>
  >>> tf.io.decode_raw(tf.constant(["12","34"]), tf.uint16, fixed_length=4)
  <tf.Tensor: shape=(2, 2), dtype=uint16, numpy=
  array([[12849,     0],
         [    0,     0]], dtype=uint16)>

  This will be fixed on a future release of TensorFlow.

  Args:
    input_bytes:
      Each element of the input Tensor is converted to an array of bytes.

      Currently, this must be a tensor of strings (bytes), although semantically
      the operation should support any input.
    out_type:
      `DType` of the output. Acceptable types are `half`, `float`, `double`,
      `int32`, `uint16`, `uint8`, `int16`, `int8`, `int64`.
    little_endian:
      Whether the `input_bytes` data is in little-endian format. Data will be
      converted into host byte order if necessary.
    fixed_length:
      If set, the first `fixed_length` bytes of each element will be converted.
      Data will be zero-padded or truncated to the specified length.

      `fixed_length` must be a multiple of the size of `out_type`.

      `fixed_length` must be specified if the elements of `input_bytes` are of
      variable length.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` object storing the decoded bytes.
  """
    if fixed_length is not None:
        return gen_parsing_ops.decode_padded_raw(input_bytes,
                                                 fixed_length=fixed_length,
                                                 out_type=out_type,
                                                 little_endian=little_endian,
                                                 name=name)
    else:
        return gen_parsing_ops.decode_raw(input_bytes,
                                          out_type,
                                          little_endian=little_endian,
                                          name=name)