Ejemplo n.º 1
0
  def testNoOp(self):
    x_shape = [13, 9, 3]
    x_np = np.ones(x_shape, dtype=np.float32)

    with self.test_session():
      x = constant_op.constant(x_np, shape=x_shape)
      target_height = x_shape[0]
      target_width = x_shape[1]
      y = image_ops.crop_to_bounding_box(x, 0, 0, target_height, target_width)
      y_tf = y.eval()
      self.assertAllEqual(y_tf, x_np)
Ejemplo n.º 2
0
  def testNoOp(self):
    x_shape = [13, 9, 3]
    x_np = np.ones(x_shape, dtype=np.float32)

    with self.test_session():
      x = constant_op.constant(x_np, shape=x_shape)
      target_height = x_shape[0]
      target_width = x_shape[1]
      y = image_ops.crop_to_bounding_box(x, 0, 0, target_height, target_width)
      y_tf = y.eval()
      self.assertAllEqual(y_tf, x_np)
Ejemplo n.º 3
0
    def testCropping(self):
        x_np = np.arange(0, 30, dtype=np.int32).reshape([6, 5, 1])

        offset_height = 1
        after_height = 2

        offset_width = 0
        after_width = 3

        target_height = x_np.shape[0] - offset_height - after_height
        target_width = x_np.shape[1] - offset_width - after_width

        y_np = x_np[offset_height : offset_height + target_height, offset_width : offset_width + target_width, :]

        with self.test_session():
            x = constant_op.constant(x_np, shape=x_np.shape)
            y = image_ops.crop_to_bounding_box(x, offset_height, offset_width, target_height, target_width)
            y_tf = y.eval()
            self.assertAllEqual(y_tf.flatten(), y_np.flatten())
Ejemplo n.º 4
0
    def testCropping(self):
        x_np = np.arange(0, 30, dtype=np.int32).reshape([6, 5, 1])

        offset_height = 1
        after_height = 2

        offset_width = 0
        after_width = 3

        target_height = x_np.shape[0] - offset_height - after_height
        target_width = x_np.shape[1] - offset_width - after_width

        y_np = x_np[offset_height:offset_height + target_height,
                    offset_width:offset_width + target_width, :]

        with self.test_session():
            x = constant_op.constant(x_np, shape=x_np.shape)
            y = image_ops.crop_to_bounding_box(x, offset_height, offset_width,
                                               target_height, target_width)
            y_tf = y.eval()
            self.assertAllEqual(y_tf.flatten(), y_np.flatten())
Ejemplo n.º 5
0
    def _evalDecodeJpeg(self,
                        image_name,
                        parallelism,
                        num_iters,
                        crop_during_decode=None,
                        crop_window=None,
                        tile=None):
        """Evaluate DecodeJpegOp for the given image.

    TODO(tanmingxing): add decoding+cropping as well.

    Args:
      image_name: a string of image file name (without suffix).
      parallelism: the number of concurrent decode_jpeg ops to be run.
      num_iters: number of iterations for evaluation.
      crop_during_decode: If true, use fused DecodeAndCropJpeg instead of
          separate decode and crop ops. It is ignored if crop_window is None.
      crop_window: if not None, crop the decoded image. Depending on
          crop_during_decode, cropping could happen during or after decoding.
      tile: if not None, tile the image to composite a larger fake image.

    Returns:
      The duration of the run in seconds.
    """
        ops.reset_default_graph()

        image_file_path = resource_loader.get_path_to_datafile(
            os.path.join('core', 'lib', 'jpeg', 'testdata', image_name))

        if tile is None:
            image_content = variable_scope.get_variable(
                'image_%s' % image_name,
                initializer=io_ops.read_file(image_file_path))
        else:
            single_image = image_ops.decode_jpeg(
                io_ops.read_file(image_file_path),
                channels=3,
                name='single_image')
            # Tile the image to composite a new larger image.
            tiled_image = array_ops.tile(single_image, tile)
            image_content = variable_scope.get_variable(
                'tiled_image_%s' % image_name,
                initializer=image_ops.encode_jpeg(tiled_image))

        with session.Session() as sess:
            self.evaluate(variables.global_variables_initializer())
            images = []
            for _ in xrange(parallelism):
                if crop_window is None:
                    # No crop.
                    image = image_ops.decode_jpeg(image_content, channels=3)
                elif crop_during_decode:
                    # combined decode and crop.
                    image = image_ops.decode_and_crop_jpeg(image_content,
                                                           crop_window,
                                                           channels=3)
                else:
                    # separate decode and crop.
                    image = image_ops.decode_jpeg(image_content, channels=3)
                    image = image_ops.crop_to_bounding_box(
                        image,
                        offset_height=crop_window[0],
                        offset_width=crop_window[1],
                        target_height=crop_window[2],
                        target_width=crop_window[3])

                images.append(image)
            r = control_flow_ops.group(*images)

            for _ in xrange(3):
                # Skip warm up time.
                self.evaluate(r)

            start_time = time.time()
            for _ in xrange(num_iters):
                self.evaluate(r)
            end_time = time.time()
        return end_time - start_time
Ejemplo n.º 6
0
  def _evalDecodeJpeg(self,
                      image_name,
                      parallelism,
                      num_iters,
                      crop_during_decode=None,
                      crop_window=None,
                      tile=None):
    """Evaluate DecodeJpegOp for the given image.

    TODO(tanmingxing): add decoding+cropping as well.

    Args:
      image_name: a string of image file name (without suffix).
      parallelism: the number of concurrent decode_jpeg ops to be run.
      num_iters: number of iterations for evaluation.
      crop_during_decode: If true, use fused DecodeAndCropJpeg instead of
          separate decode and crop ops. It is ignored if crop_window is None.
      crop_window: if not None, crop the decoded image. Depending on
          crop_during_decode, cropping could happen during or after decoding.
      tile: if not None, tile the image to composite a larger fake image.

    Returns:
      The duration of the run in seconds.
    """
    ops.reset_default_graph()

    image_file_path = os.path.join(prefix_path, image_name)

    if tile is None:
      image_content = variable_scope.get_variable(
          'image_%s' % image_name,
          initializer=io_ops.read_file(image_file_path))
    else:
      single_image = image_ops.decode_jpeg(
          io_ops.read_file(image_file_path), channels=3, name='single_image')
      # Tile the image to composite a new larger image.
      tiled_image = array_ops.tile(single_image, tile)
      image_content = variable_scope.get_variable(
          'tiled_image_%s' % image_name,
          initializer=image_ops.encode_jpeg(tiled_image))

    with session.Session() as sess:
      sess.run(variables.global_variables_initializer())
      images = []
      for _ in xrange(parallelism):
        if crop_window is None:
          # No crop.
          image = image_ops.decode_jpeg(image_content, channels=3)
        elif crop_during_decode:
          # combined decode and crop.
          image = image_ops.decode_and_crop_jpeg(
              image_content, crop_window, channels=3)
        else:
          # separate decode and crop.
          image = image_ops.decode_jpeg(image_content, channels=3)
          image = image_ops.crop_to_bounding_box(
              image,
              offset_height=crop_window[0],
              offset_width=crop_window[1],
              target_height=crop_window[2],
              target_width=crop_window[3])

        images.append(image)
      r = control_flow_ops.group(*images)

      for _ in xrange(3):
        # Skip warm up time.
        sess.run(r)

      start_time = time.time()
      for _ in xrange(num_iters):
        sess.run(r)
    return time.time() - start_time