Ejemplo n.º 1
0
    def _create_scale_operator(self, identity_multiplier, diag, tril,
                               perturb_diag, perturb_factor, shift,
                               validate_args):
        """Construct `scale` from various components.

    Args:
      identity_multiplier: floating point rank 0 `Tensor` representing a scaling
        done to the identity matrix.
      diag: Floating-point `Tensor` representing the diagonal matrix.
        `scale_diag` has shape [N1, N2, ...  k], which represents a k x k
        diagonal matrix.
      tril: Floating-point `Tensor` representing the diagonal matrix.
        `scale_tril` has shape [N1, N2, ...  k], which represents a k x k lower
        triangular matrix.
      perturb_diag: Floating-point `Tensor` representing the diagonal matrix of
        the low rank update.
      perturb_factor: Floating-point `Tensor` representing factor matrix.
      shift: Floating-point `Tensor` representing `shift in `scale @ X + shift`.
      validate_args: Python `bool` indicating whether arguments should be
        checked for correctness.

    Returns:
      scale. In the case of scaling by a constant, scale is a
      floating point `Tensor`. Otherwise, scale is a `LinearOperator`.

    Raises:
      ValueError: if all of `tril`, `diag` and `identity_multiplier` are `None`.
    """
        identity_multiplier = _as_tensor(identity_multiplier,
                                         "identity_multiplier")
        diag = _as_tensor(diag, "diag")
        tril = _as_tensor(tril, "tril")
        perturb_diag = _as_tensor(perturb_diag, "perturb_diag")
        perturb_factor = _as_tensor(perturb_factor, "perturb_factor")

        # If possible, use the low rank update to infer the shape of
        # the identity matrix, when scale represents a scaled identity matrix
        # with a low rank update.
        shape_hint = None
        if perturb_factor is not None:
            shape_hint = distribution_util.dimension_size(perturb_factor,
                                                          axis=-2)

        if self._is_only_identity_multiplier:
            if validate_args:
                return control_flow_ops.with_dependencies([
                    check_ops.assert_none_equal(
                        identity_multiplier,
                        array_ops.zeros([], identity_multiplier.dtype),
                        ["identity_multiplier should be non-zero."])
                ], identity_multiplier)
            return identity_multiplier

        scale = distribution_util.make_tril_scale(
            loc=shift,
            scale_tril=tril,
            scale_diag=diag,
            scale_identity_multiplier=identity_multiplier,
            validate_args=validate_args,
            assert_positive=False,
            shape_hint=shape_hint)

        if perturb_factor is not None:
            return linalg.LinearOperatorLowRankUpdate(
                scale,
                u=perturb_factor,
                diag_update=perturb_diag,
                is_diag_update_positive=perturb_diag is None,
                is_non_singular=True,  # Implied by is_positive_definite=True.
                is_self_adjoint=True,
                is_positive_definite=True,
                is_square=True)

        return scale
Ejemplo n.º 2
0
    def __init__(self,
                 loc=None,
                 scale_diag=None,
                 scale_identity_multiplier=None,
                 scale_perturb_factor=None,
                 scale_perturb_diag=None,
                 validate_args=False,
                 allow_nan_stats=True,
                 name="MultivariateNormalDiagPlusLowRank"):
        """Construct Multivariate Normal distribution on `R^k`.

    The `batch_shape` is the broadcast shape between `loc` and `scale`
    arguments.

    The `event_shape` is given by last dimension of the matrix implied by
    `scale`. The last dimension of `loc` (if provided) must broadcast with this.

    Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is:

    ```none
    scale = diag(scale_diag + scale_identity_multiplier ones(k)) +
        scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T
    ```

    where:

    * `scale_diag.shape = [k]`,
    * `scale_identity_multiplier.shape = []`,
    * `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and,
    * `scale_perturb_diag.shape = [r]`.

    Additional leading dimensions (if any) will index batches.

    If both `scale_diag` and `scale_identity_multiplier` are `None`, then
    `scale` is the Identity matrix.

    Args:
      loc: Floating-point `Tensor`. If this is set to `None`, `loc` is
        implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where
        `b >= 0` and `k` is the event size.
      scale_diag: Non-zero, floating-point `Tensor` representing a diagonal
        matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`,
        and characterizes `b`-batches of `k x k` diagonal matrices added to
        `scale`. When both `scale_identity_multiplier` and `scale_diag` are
        `None` then `scale` is the `Identity`.
      scale_identity_multiplier: Non-zero, floating-point `Tensor` representing
        a scaled-identity-matrix added to `scale`. May have shape
        `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled
        `k x k` identity matrices added to `scale`. When both
        `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is
        the `Identity`.
      scale_perturb_factor: Floating-point `Tensor` representing a rank-`r`
        perturbation added to `scale`. May have shape `[B1, ..., Bb, k, r]`,
        `b >= 0`, and characterizes `b`-batches of rank-`r` updates to `scale`.
        When `None`, no rank-`r` update is added to `scale`.
      scale_perturb_diag: Floating-point `Tensor` representing a diagonal matrix
        inside the rank-`r` perturbation added to `scale`. May have shape
        `[B1, ..., Bb, r]`, `b >= 0`, and characterizes `b`-batches of `r x r`
        diagonal matrices inside the perturbation added to `scale`. When
        `None`, an identity matrix is used inside the perturbation. Can only be
        specified if `scale_perturb_factor` is also specified.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`,
        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
        indicate the result is undefined. When `False`, an exception is raised
        if one or more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.

    Raises:
      ValueError: if at most `scale_identity_multiplier` is specified.
    """
        parameters = dict(locals())

        def _convert_to_tensor(x, name):
            return None if x is None else ops.convert_to_tensor(x, name=name)

        with ops.name_scope(name) as name:
            with ops.name_scope("init",
                                values=[
                                    loc, scale_diag, scale_identity_multiplier,
                                    scale_perturb_factor, scale_perturb_diag
                                ]):
                has_low_rank = (scale_perturb_factor is not None
                                or scale_perturb_diag is not None)
                scale = distribution_util.make_diag_scale(
                    loc=loc,
                    scale_diag=scale_diag,
                    scale_identity_multiplier=scale_identity_multiplier,
                    validate_args=validate_args,
                    assert_positive=has_low_rank)
                scale_perturb_factor = _convert_to_tensor(
                    scale_perturb_factor, name="scale_perturb_factor")
                scale_perturb_diag = _convert_to_tensor(
                    scale_perturb_diag, name="scale_perturb_diag")
                if has_low_rank:
                    scale = linalg.LinearOperatorLowRankUpdate(
                        scale,
                        u=scale_perturb_factor,
                        diag_update=scale_perturb_diag,
                        is_diag_update_positive=scale_perturb_diag is None,
                        is_non_singular=
                        True,  # Implied by is_positive_definite=True.
                        is_self_adjoint=True,
                        is_positive_definite=True,
                        is_square=True)
        super(MultivariateNormalDiagPlusLowRank,
              self).__init__(loc=loc,
                             scale=scale,
                             validate_args=validate_args,
                             allow_nan_stats=allow_nan_stats,
                             name=name)
        self._parameters = parameters