def test_different_dtypes_raises(self):
   operators = [
       linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3)),
       linalg.LinearOperatorFullMatrix(rng.rand(2, 3, 3).astype(np.float32))
   ]
   with self.assertRaisesRegexp(TypeError, "same dtype"):
     kronecker.LinearOperatorKronecker(operators)
  def _operator_and_matrix(self, build_info, dtype, use_placeholder):
    shape = list(build_info.shape)
    expected_factors = build_info.__dict__["factors"]
    matrices = [
        linear_operator_test_util.random_positive_definite_matrix(
            block_shape, dtype, force_well_conditioned=True)
        for block_shape in expected_factors
    ]

    lin_op_matrices = matrices

    if use_placeholder:
      lin_op_matrices = [
          array_ops.placeholder_with_default(m, shape=None) for m in matrices]

    operator = kronecker.LinearOperatorKronecker(
        [linalg.LinearOperatorFullMatrix(
            l, is_square=True) for l in lin_op_matrices])

    matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices)

    kronecker_dense = _kronecker_dense(matrices)

    if not use_placeholder:
      kronecker_dense.set_shape(shape)

    return operator, kronecker_dense
Ejemplo n.º 3
0
 def test_kronecker_cholesky_type(self):
     matrix = [[1., 0.], [0., 1.]]
     operator = kronecker.LinearOperatorKronecker(
         [
             linalg.LinearOperatorFullMatrix(
                 matrix,
                 is_positive_definite=True,
                 is_self_adjoint=True,
             ),
             linalg.LinearOperatorFullMatrix(
                 matrix,
                 is_positive_definite=True,
                 is_self_adjoint=True,
             ),
         ],
         is_positive_definite=True,
         is_self_adjoint=True,
     )
     cholesky_factor = operator.cholesky()
     self.assertIsInstance(cholesky_factor,
                           kronecker.LinearOperatorKronecker)
     self.assertEqual(2, len(cholesky_factor.operators))
     self.assertIsInstance(cholesky_factor.operators[0],
                           lower_triangular.LinearOperatorLowerTriangular)
     self.assertIsInstance(cholesky_factor.operators[1],
                           lower_triangular.LinearOperatorLowerTriangular)
  def test_name(self):
    matrix = [[11., 0.], [1., 8.]]
    operator_1 = linalg.LinearOperatorFullMatrix(matrix, name="left")
    operator_2 = linalg.LinearOperatorFullMatrix(matrix, name="right")

    operator = kronecker.LinearOperatorKronecker([operator_1, operator_2])

    self.assertEqual("left_x_right", operator.name)
  def test_is_non_singular_auto_set(self):
    # Matrix with two positive eigenvalues, 11 and 8.
    # The matrix values do not effect auto-setting of the flags.
    matrix = [[11., 0.], [1., 8.]]
    operator_1 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)
    operator_2 = linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True)

    operator = kronecker.LinearOperatorKronecker(
        [operator_1, operator_2],
        is_positive_definite=False,  # No reason it HAS to be False...
        is_non_singular=None)
    self.assertFalse(operator.is_positive_definite)
    self.assertTrue(operator.is_non_singular)

    with self.assertRaisesRegexp(ValueError, "always non-singular"):
      kronecker.LinearOperatorKronecker(
          [operator_1, operator_2], is_non_singular=False)
Ejemplo n.º 6
0
def _cholesky_kronecker(kronecker_operator):
    # Cholesky decomposition of a Kronecker product is the Kronecker product
    # of cholesky decompositions.
  return linear_operator_kronecker.LinearOperatorKronecker(
      operators=[
          operator.cholesky() for operator in kronecker_operator.operators],
      is_non_singular=True,
      is_self_adjoint=False,
      is_square=True)
Ejemplo n.º 7
0
def _inverse_kronecker(kronecker_operator):
  # Inverse decomposition of a Kronecker product is the Kronecker product
  # of inverse decompositions.
  return linear_operator_kronecker.LinearOperatorKronecker(
      operators=[
          operator.inverse() for operator in kronecker_operator.operators],
      is_non_singular=kronecker_operator.is_non_singular,
      is_self_adjoint=kronecker_operator.is_self_adjoint,
      is_positive_definite=kronecker_operator.is_positive_definite,
      is_square=True)
Ejemplo n.º 8
0
def _adjoint_kronecker(kronecker_operator):
    # Adjoint of a Kronecker product is the Kronecker product
    # of adjoints.
  return linear_operator_kronecker.LinearOperatorKronecker(
      operators=[
          operator.adjoint() for operator in kronecker_operator.operators],
      is_non_singular=kronecker_operator.is_non_singular,
      is_self_adjoint=kronecker_operator.is_self_adjoint,
      is_positive_definite=kronecker_operator.is_positive_definite,
      is_square=True)
Ejemplo n.º 9
0
    def _operator_and_mat_and_feed_dict(self, build_info, dtype,
                                        use_placeholder):
        shape = list(build_info.shape)
        expected_factors = build_info.__dict__["factors"]
        matrices = [
            linear_operator_test_util.random_positive_definite_matrix(
                block_shape, dtype, force_well_conditioned=True)
            for block_shape in expected_factors
        ]

        if use_placeholder:
            matrices_ph = [
                array_ops.placeholder(dtype=dtype) for _ in expected_factors
            ]
            # Evaluate here because (i) you cannot feed a tensor, and (ii)
            # values are random and we want the same value used for both mat and
            # feed_dict.
            matrices = self.evaluate(matrices)
            operator = kronecker.LinearOperatorKronecker([
                linalg.LinearOperatorFullMatrix(m_ph, is_square=True)
                for m_ph in matrices_ph
            ],
                                                         is_square=True)
            feed_dict = {m_ph: m for (m_ph, m) in zip(matrices_ph, matrices)}
        else:
            operator = kronecker.LinearOperatorKronecker([
                linalg.LinearOperatorFullMatrix(m, is_square=True)
                for m in matrices
            ])
            feed_dict = None
            # Should be auto-set.
            self.assertTrue(operator.is_square)

        matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices)

        kronecker_dense = _kronecker_dense(matrices)

        if not use_placeholder:
            kronecker_dense.set_shape(shape)

        return operator, kronecker_dense, feed_dict
Ejemplo n.º 10
0
 def test_kronecker_inverse_type(self):
     matrix = [[1., 0.], [0., 1.]]
     operator = kronecker.LinearOperatorKronecker(
         [
             linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True),
             linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True),
         ],
         is_non_singular=True,
     )
     inverse = operator.inverse()
     self.assertIsInstance(inverse, kronecker.LinearOperatorKronecker)
     self.assertEqual(2, len(inverse.operators))
Ejemplo n.º 11
0
 def test_kronecker_adjoint_type(self):
     matrix = [[1., 0.], [0., 1.]]
     operator = kronecker.LinearOperatorKronecker(
         [
             linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True),
             linalg.LinearOperatorFullMatrix(matrix, is_non_singular=True),
         ],
         is_non_singular=True,
     )
     adjoint = operator.adjoint()
     self.assertIsInstance(adjoint, kronecker.LinearOperatorKronecker)
     self.assertEqual(2, len(adjoint.operators))
 def test_is_x_flags(self):
   # Matrix with two positive eigenvalues, 1, and 1.
   # The matrix values do not effect auto-setting of the flags.
   matrix = [[1., 0.], [1., 1.]]
   operator = kronecker.LinearOperatorKronecker(
       [linalg.LinearOperatorFullMatrix(matrix),
        linalg.LinearOperatorFullMatrix(matrix)],
       is_positive_definite=True,
       is_non_singular=True,
       is_self_adjoint=False)
   self.assertTrue(operator.is_positive_definite)
   self.assertTrue(operator.is_non_singular)
   self.assertFalse(operator.is_self_adjoint)
Ejemplo n.º 13
0
 def test_tape_safe(self):
     matrix_1 = variables_module.Variable([[1., 0.], [0., 1.]])
     matrix_2 = variables_module.Variable([[2., 0.], [0., 2.]])
     operator = kronecker.LinearOperatorKronecker(
         [
             linalg.LinearOperatorFullMatrix(matrix_1,
                                             is_non_singular=True),
             linalg.LinearOperatorFullMatrix(matrix_2,
                                             is_non_singular=True),
         ],
         is_non_singular=True,
     )
     self.check_tape_safe(operator)
Ejemplo n.º 14
0
 def test_convert_variables_to_tensors(self):
     matrix_1 = variables_module.Variable([[1., 0.], [0., 1.]])
     matrix_2 = variables_module.Variable([[2., 0.], [0., 2.]])
     operator = kronecker.LinearOperatorKronecker(
         [
             linalg.LinearOperatorFullMatrix(matrix_1,
                                             is_non_singular=True),
             linalg.LinearOperatorFullMatrix(matrix_2,
                                             is_non_singular=True),
         ],
         is_non_singular=True,
     )
     with self.cached_session() as sess:
         sess.run([x.initializer for x in operator.variables])
         self.check_convert_variables_to_tensors(operator)
Ejemplo n.º 15
0
    def operator_and_matrix(self,
                            build_info,
                            dtype,
                            use_placeholder,
                            ensure_self_adjoint_and_pd=False):
        # Kronecker products constructed below will be from symmetric
        # positive-definite matrices.
        del ensure_self_adjoint_and_pd
        shape = list(build_info.shape)
        expected_factors = build_info.__dict__["factors"]
        matrices = [
            linear_operator_test_util.random_positive_definite_matrix(
                block_shape, dtype, force_well_conditioned=True)
            for block_shape in expected_factors
        ]

        lin_op_matrices = matrices

        if use_placeholder:
            lin_op_matrices = [
                array_ops.placeholder_with_default(m, shape=None)
                for m in matrices
            ]

        operator = kronecker.LinearOperatorKronecker([
            linalg.LinearOperatorFullMatrix(l,
                                            is_square=True,
                                            is_self_adjoint=True,
                                            is_positive_definite=True)
            for l in lin_op_matrices
        ])

        matrices = linear_operator_util.broadcast_matrix_batch_dims(matrices)

        kronecker_dense = _kronecker_dense(matrices)

        if not use_placeholder:
            kronecker_dense.set_shape(shape)

        return operator, kronecker_dense
 def test_empty_or_one_operators_raises(self):
   with self.assertRaisesRegexp(ValueError, ">=1 operators"):
     kronecker.LinearOperatorKronecker([])