Ejemplo n.º 1
0
 def __call__(self, shape, dtype, **kwargs):
   value = linalg_ops_impl.eye(*shape, dtype=dtype)
   if "partition_shape" in kwargs and "partition_offset" in kwargs:
     return array_ops.slice(value, kwargs["partition_offset"],
                            kwargs["partition_shape"])
   raise AssertionError("PartitionAwareIdentity do not support "
                        "non-partitioned initialization")
Ejemplo n.º 2
0
  def _block_orth(self, p1, p2, p3):
    """Construct a 3 x 3 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
      p3: A symmetric projection matrix.
    Returns:
      A 2 x 2 x 2 kernel.
    Raises:
      ValueError: If the dimensions of p1, p2 and p3 are different.
    """
    p1_shape = p1.shape.as_list()
    if p1_shape != p2.shape.as_list() or p1_shape != p3.shape.as_list():
      raise ValueError("The dimension of the matrices must be the same.")
    n = p1_shape[0]
    eye = linalg_ops_impl.eye(n, dtype=self.dtype)
    kernel2x2x2 = {}
    def matmul(p1, p2, p3):
      return math_ops.matmul(math_ops.matmul(p1, p2), p3)
    def cast(i, p):
      """Return p or (1-p)."""
      return i * p + (1-i) * (eye - p)
    for i in [0, 1]:
      for j in [0, 1]:
        for k in [0, 1]:
          kernel2x2x2[i, j, k] = matmul(cast(i, p1), cast(j, p2), cast(k, p3))
    return kernel2x2x2
Ejemplo n.º 3
0
    def _block_orth(self, p1, p2, p3):
        """Construct a 3 x 3 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
      p3: A symmetric projection matrix.
    Returns:
      A 2 x 2 x 2 kernel.
    Raises:
      ValueError: If the dimensions of p1, p2 and p3 are different.
    """
        p1_shape = p1.shape.as_list()
        if p1_shape != p2.shape.as_list() or p1_shape != p3.shape.as_list():
            raise ValueError("The dimension of the matrices must be the same.")
        n = p1_shape[0]
        eye = linalg_ops_impl.eye(n, dtype=self.dtype)
        kernel2x2x2 = {}

        def matmul(p1, p2, p3):
            return math_ops.matmul(math_ops.matmul(p1, p2), p3)

        def cast(i, p):
            """Return p or (1-p)."""
            return i * p + (1 - i) * (eye - p)

        for i in [0, 1]:
            for j in [0, 1]:
                for k in [0, 1]:
                    kernel2x2x2[i, j, k] = matmul(cast(i, p1), cast(j, p2),
                                                  cast(k, p3))
        return kernel2x2x2
Ejemplo n.º 4
0
 def __call__(self, shape, dtype=None, partition_info=None):
   full_shape = shape if partition_info is None else partition_info.full_shape
   if len(full_shape) != 2:
     raise ValueError(
         "Identity matrix initializer can only be used for 2D matrices.")
   if dtype is None:
     dtype = self.dtype
   initializer = linalg_ops_impl.eye(*full_shape, dtype=dtype)
   if partition_info is not None:
     initializer = array_ops.slice(initializer, partition_info.var_offset,
                                   shape)
   return self.gain * initializer
Ejemplo n.º 5
0
  def _block_orth(self, projection_matrix):
    """Construct a kernel. Used to construct orthgonal kernel.

    Args:
      projection_matrix: A symmetric projection matrix of size n x n.
    Returns:
      [projection_matrix, (1 - projection_matrix)].
    """
    n = projection_matrix.shape.as_list()[0]
    kernel = {}
    eye = linalg_ops_impl.eye(n, dtype=self.dtype)
    kernel[0] = projection_matrix
    kernel[1] = eye - projection_matrix
    return kernel
Ejemplo n.º 6
0
 def __call__(self, shape, dtype=None, partition_info=None):
     full_shape = shape if partition_info is None else partition_info.full_shape
     if len(full_shape) != 2:
         raise ValueError(
             "Identity matrix initializer can only be used for 2D matrices."
         )
     if dtype is None:
         dtype = self.dtype
     gain_identity = self.diagonal_gain * linalg_ops_impl.eye(*full_shape,
                                                              dtype=dtype)
     gain_ones = self.off_diagonal_gain * array_ops.ones(full_shape,
                                                         dtype=dtype)
     gdn_init = math_ops.sqrt(gain_identity + math_ops.square(gain_ones))
     return gdn_init
Ejemplo n.º 7
0
    def _block_orth(self, projection_matrix):
        """Construct a kernel. Used to construct orthgonal kernel.

    Args:
      projection_matrix: A symmetric projection matrix of size n x n.
    Returns:
      [projection_matrix, (1 - projection_matrix)].
    """
        n = projection_matrix.shape.as_list()[0]
        kernel = {}
        eye = linalg_ops_impl.eye(n, dtype=self.dtype)
        kernel[0] = projection_matrix
        kernel[1] = eye - projection_matrix
        return kernel
Ejemplo n.º 8
0
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype=dtypes.float32,
        name=None):
    """Construct an identity matrix, or a batch of matrices.

  See also `tf.ones`, `tf.zeros`, `tf.fill`, `tf.one_hot`.

  ```python
  # Construct one identity matrix.
  tf.eye(2)
  ==> [[1., 0.],
       [0., 1.]]

  # Construct a batch of 3 identity matrices, each 2 x 2.
  # batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
  batch_identity = tf.eye(2, batch_shape=[3])

  # Construct one 2 x 3 "identity" matrix
  tf.eye(2, num_columns=3)
  ==> [[ 1.,  0.,  0.],
       [ 0.,  1.,  0.]]
  ```

  Args:
    num_rows: Non-negative `int32` scalar `Tensor` giving the number of rows
      in each batch matrix.
    num_columns: Optional non-negative `int32` scalar `Tensor` giving the number
      of columns in each batch matrix.  Defaults to `num_rows`.
    batch_shape:  A list or tuple of Python integers or a 1-D `int32` `Tensor`.
      If provided, the returned `Tensor` will have leading batch dimensions of
      this shape.
    dtype:  The type of an element in the resulting `Tensor`
    name:  A name for this `Op`.  Defaults to "eye".

  Returns:
    A `Tensor` of shape `batch_shape + [num_rows, num_columns]`
  """
    return linalg_ops_impl.eye(num_rows,
                               num_columns=num_columns,
                               batch_shape=batch_shape,
                               dtype=dtype,
                               name=name)
Ejemplo n.º 9
0
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype=dtypes.float32,
        name=None):
  """Construct an identity matrix, or a batch of matrices.

  ```python
  # Construct one identity matrix.
  tf.eye(2)
  ==> [[1., 0.],
       [0., 1.]]

  # Construct a batch of 3 identity matricies, each 2 x 2.
  # batch_identity[i, :, :] is a 2 x 2 identity matrix, i = 0, 1, 2.
  batch_identity = tf.eye(2, batch_shape=[3])

  # Construct one 2 x 3 "identity" matrix
  tf.eye(2, num_columns=3)
  ==> [[ 1.,  0.,  0.],
       [ 0.,  1.,  0.]]
  ```

  Args:
    num_rows: Non-negative `int32` scalar `Tensor` giving the number of rows
      in each batch matrix.
    num_columns: Optional non-negative `int32` scalar `Tensor` giving the number
      of columns in each batch matrix.  Defaults to `num_rows`.
    batch_shape:  A list or tuple of Python integers or a 1-D `int32` `Tensor`.
      If provided, the returned `Tensor` will have leading batch dimensions of
      this shape.
    dtype:  The type of an element in the resulting `Tensor`
    name:  A name for this `Op`.  Defaults to "eye".

  Returns:
    A `Tensor` of shape `batch_shape + [num_rows, num_columns]`
  """
  return linalg_ops_impl.eye(num_rows,
                             num_columns=num_columns,
                             batch_shape=batch_shape,
                             dtype=dtype,
                             name=name)
Ejemplo n.º 10
0
  def __call__(self, shape, dtype=dtypes.float32, **kwargs):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.
      **kwargs: Additional keyword arguments.

    Raises:
      ValueError: If the dtype is not floating point
      ValueError: If the requested shape does not have exactly two axes.
    """
    self._validate_kwargs(kwargs, support_partition=False)
    dtype = _assert_float_dtype(dtype)
    if len(shape) != 2:
      raise ValueError(
          "Identity matrix initializer can only be used for 2D matrices.")
    initializer = linalg_ops_impl.eye(*shape, dtype=dtype)
    return self.gain * initializer
Ejemplo n.º 11
0
  def __call__(self, shape, dtype=dtypes.float32, **kwargs):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.
      **kwargs: Additional keyword arguments.

    Raises:
      ValueError: If the dtype is not floating point
      ValueError: If the requested shape does not have exactly two axes.
    """
    self._validate_kwargs(kwargs, support_partition=False)
    dtype = _assert_float_dtype(dtype)
    if len(shape) != 2:
      raise ValueError("The tensor to initialize, specified by argument `shape`"
                       " must be at least two-dimensional. Received shape="
                       f"{shape}")
    initializer = linalg_ops_impl.eye(*shape, dtype=dtype)
    return self.gain * initializer
Ejemplo n.º 12
0
  def __call__(self, shape, dtype=dtypes.float32):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.

    Raises:
      ValueError: If the dtype is not floating point
    """
    partition_info = None  # Keeps logic so can be readded later if necessary
    dtype = _assert_float_dtype(dtype)
    full_shape = shape if partition_info is None else partition_info.full_shape
    if len(full_shape) != 2:
      raise ValueError(
          "Identity matrix initializer can only be used for 2D matrices.")
    initializer = linalg_ops_impl.eye(*full_shape, dtype=dtype)
    if partition_info is not None:
      initializer = array_ops.slice(initializer, partition_info.var_offset,
                                    shape)
    return self.gain * initializer
Ejemplo n.º 13
0
  def __call__(self, shape, dtype=dtypes.float32):
    """Returns a tensor object initialized as specified by the initializer.

    Args:
      shape: Shape of the tensor.
      dtype: Optional dtype of the tensor. Only floating point types are
       supported.

    Raises:
      ValueError: If the dtype is not floating point
    """
    partition_info = None  # Keeps logic so can be readded later if necessary
    dtype = _assert_float_dtype(dtype)
    full_shape = shape if partition_info is None else partition_info.full_shape
    if len(full_shape) != 2:
      raise ValueError(
          "Identity matrix initializer can only be used for 2D matrices.")
    initializer = linalg_ops_impl.eye(*full_shape, dtype=dtype)
    if partition_info is not None:
      initializer = array_ops.slice(initializer, partition_info.var_offset,
                                    shape)
    return self.gain * initializer
Ejemplo n.º 14
0
    def _block_orth(self, p1, p2):
        """Construct a 2 x 2 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
    Returns:
      A 2 x 2 kernel [[p1p2,         p1(1-p2)],
                      [(1-p1)p2, (1-p1)(1-p2)]].
    Raises:
      ValueError: If the dimensions of p1 and p2 are different.
    """
        if p1.shape.as_list() != p2.shape.as_list():
            raise ValueError("The dimension of the matrices must be the same.")
        n = p1.shape.as_list()[0]
        kernel2x2 = {}
        eye = linalg_ops_impl.eye(n, dtype=self.dtype)
        kernel2x2[0, 0] = math_ops.matmul(p1, p2)
        kernel2x2[0, 1] = math_ops.matmul(p1, (eye - p2))
        kernel2x2[1, 0] = math_ops.matmul((eye - p1), p2)
        kernel2x2[1, 1] = math_ops.matmul((eye - p1), (eye - p2))

        return kernel2x2
Ejemplo n.º 15
0
  def _block_orth(self, p1, p2):
    """Construct a 2 x 2 kernel. Used to construct orthgonal kernel.

    Args:
      p1: A symmetric projection matrix.
      p2: A symmetric projection matrix.
    Returns:
      A 2 x 2 kernel [[p1p2,         p1(1-p2)],
                      [(1-p1)p2, (1-p1)(1-p2)]].
    Raises:
      ValueError: If the dimensions of p1 and p2 are different.
    """
    if p1.shape.as_list() != p2.shape.as_list():
      raise ValueError("The dimension of the matrices must be the same.")
    n = p1.shape.as_list()[0]
    kernel2x2 = {}
    eye = linalg_ops_impl.eye(n, dtype=self.dtype)
    kernel2x2[0, 0] = math_ops.matmul(p1, p2)
    kernel2x2[0, 1] = math_ops.matmul(p1, (eye - p2))
    kernel2x2[1, 0] = math_ops.matmul((eye - p1), p2)
    kernel2x2[1, 1] = math_ops.matmul((eye - p1), (eye - p2))

    return kernel2x2
Ejemplo n.º 16
0
 def __call__(self, shape, dtype, partition):
     value = linalg_ops_impl.eye(*shape, dtype=dtype)
     if partition is not None:
         value = array_ops.slice(value, partition.offsets, partition.shape)
     return value
Ejemplo n.º 17
0
 def __call__(self, shape, dtype, shard_info):
     value = linalg_ops_impl.eye(*shape, dtype=dtype)
     if shard_info is not None:
         value = array_ops.slice(value, shard_info.offset, shard_info.shape)
     return value