Ejemplo n.º 1
0
 def testXdivyWithZero(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant(np.zeros((2, 3)), dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [0., 1., 2.]], dtype=dtype)
     with self.cached_session(use_gpu=True):
       xdivy_tf_np = self.evaluate(math_ops.xdivy(x, y))
       zeros_np = self.evaluate(array_ops.zeros_like(y))
       self.assertAllClose(xdivy_tf_np, zeros_np)
Ejemplo n.º 2
0
 def testXdivyNoZero(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant([[0.1, 0.2, 3.5], [-2., -5., 30.]], dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [3.1, 4., 2.]], dtype=dtype)
     with self.cached_session(use_gpu=True):
       xdivy = self.evaluate(math_ops.xdivy(x, y))
       x_over_y = self.evaluate(x / y)
       self.assertAllClose(xdivy, x_over_y)
Ejemplo n.º 3
0
 def testXdivyNoZero(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant([[0.1, 0.2, 3.5], [-2., -5., 30.]], dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [3.1, 4., 2.]], dtype=dtype)
     with test_util.use_gpu():
       xdivy = self.evaluate(math_ops.xdivy(x, y))
       x_over_y = self.evaluate(x / y)
       self.assertAllClose(xdivy, x_over_y)
Ejemplo n.º 4
0
 def testXdivyWithZero(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant(np.zeros((2, 3)), dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [0., 1., 2.]], dtype=dtype)
     with self.cached_session(use_gpu=True):
       xdivy_tf_np = self.evaluate(math_ops.xdivy(x, y))
       zeros_np = self.evaluate(array_ops.zeros_like(y))
       self.assertAllClose(xdivy_tf_np, zeros_np)
Ejemplo n.º 5
0
 def testXdivyWithZeroBroadcast(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant([[0.], [1.]], dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [0., 1., 2.]], dtype=dtype)
     with test_util.use_gpu():
       xdivy_tf_np = self.evaluate(math_ops.xdivy(x, y))
       zeros_np = self.evaluate(array_ops.zeros_like(y[0]))
       x_over_y = self.evaluate(1 / y[1])
       self.assertAllClose(zeros_np, xdivy_tf_np[0])
       self.assertAllClose(x_over_y, xdivy_tf_np[1])
Ejemplo n.º 6
0
 def testXdivyWithZeroBroadcast(self):
   for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]:
     x = constant_op.constant([[0.], [1.]], dtype=dtype)
     y = constant_op.constant([[0.1, 0.2, 3.5], [0., 1., 2.]], dtype=dtype)
     with self.cached_session(use_gpu=True):
       xdivy_tf_np = self.evaluate(math_ops.xdivy(x, y))
       zeros_np = self.evaluate(array_ops.zeros_like(y[0]))
       x_over_y = self.evaluate(1 / y[1])
       self.assertAllClose(zeros_np, xdivy_tf_np[0])
       self.assertAllClose(x_over_y, xdivy_tf_np[1])
Ejemplo n.º 7
0
 def _xdivy_gradients(self, x, y):
   xdivy_xgrad = self.evaluate(gradients.gradients(math_ops.xdivy(x, y), x)[0])
   xdivy_ygrad = self.evaluate(gradients.gradients(math_ops.xdivy(x, y), y)[0])
   return xdivy_xgrad, xdivy_ygrad