Ejemplo n.º 1
0
 def model_fn(features, labels, mode, params, config):
     is_training = True if mode == estimator.ModeKeys.TRAIN else False
     if mode != estimator.ModeKeys.PREDICT:
         features = self._parse_sequence_weight(features)
         features = self.sparse2dense(features, self._dataset.varlen_list)
     features = self._dense2sparse(features, self._dataset.varlen_list)
     network = self._Network(self._flags, self._dataset, 'input_layer')
     dense, embeddings = network.build_features(features)
     # 对齐MMOE的论文的模型
     dense = tf.concat(dense + [tf.squeeze(emb, [1]) for emb in embeddings], -1)
     dense = tf.keras.layers.Dense(dense.get_shape().as_list()[-1], activation=tf.nn.relu)(dense)
     assert self._flags.network == "dnn", "If use MMOE model, expert’s network type should be dnn"
     experts_out = tf.stack(
         [self._Network(self._flags, self._dataset, 'expert_{}'.format(i))(dense, None, is_training)
          for i in range(self._flags.num_experts)], axis=1
     )
     gates = self._build_gates(dense)
     predictions = self._build_predictions(experts_out, gates)
     if mode == estimator.ModeKeys.PREDICT:
         return estimator.EstimatorSpec(mode, predictions=predictions)
     losses = self._build_losses(labels, predictions)
     metrics = self._build_muti_task_metrics(losses, labels, predictions)
     self._build_summary(losses, metrics)
     loss = reduce(tf.add, losses.values())
     if mode == estimator.ModeKeys.EVAL:
         return estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics)
     assert mode == estimator.ModeKeys.TRAIN
     train_op = self._build_train_op(loss)
     return estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
 def model_fn(features, labels, mode, params, config):
     is_training = True if mode == estimator.ModeKeys.TRAIN else False
     if mode != estimator.ModeKeys.PREDICT:
         features = self._parse_sequence_weight(features)
         features = self.sparse2dense(features,
                                      self._dataset.varlen_list)
     features = self._dense2sparse(features, self._dataset.varlen_list)
     network = self._Network(self._flags, self._dataset, 'input_layer')
     dense, embeddings = network.build_features(features)
     experts_out = tf.stack([
         self._Network(self._flags, self._dataset,
                       'expert_{}'.format(i))(dense, embeddings,
                                              is_training)
         for i in range(self._flags.num_experts)
     ],
                            axis=1)
     # 对每个任务都指定一个变量, 在计算loss的时候用上, 实现个性化的loss计算方式
     # 论文代码的地址, https://blog.csdn.net/cdknight_happy/article/details/102618883
     gates = self._build_gates((dense, embeddings))
     predictions = self._build_predictions(experts_out, gates)
     if mode == estimator.ModeKeys.PREDICT:
         return estimator.EstimatorSpec(mode, predictions=predictions)
     losses = self._build_losses(labels, predictions)
     metrics = self._build_muti_task_metrics(losses, labels,
                                             predictions)
     self._build_summary(losses, metrics)
     log_vars = self._build_log_vars(self._dataset.task_types.keys())
     losses = self._build_var_losses(losses, log_vars)
     loss = reduce(tf.add, losses.values())
     if mode == estimator.ModeKeys.EVAL:
         return estimator.EstimatorSpec(mode,
                                        loss=loss,
                                        eval_metric_ops=metrics)
     assert mode == estimator.ModeKeys.TRAIN
     train_op = self._build_train_op(loss)
     return estimator.EstimatorSpec(mode=mode,
                                    loss=loss,
                                    train_op=train_op)
Ejemplo n.º 3
0
def model_fn(features, labels, mode, params):
    # imei_emb_w = tf.get_variable("user_emb_w", [params['imei_count'], params['hidden_units']])
    attention_layers = [80, 40]
    mlp_layers = [100, 50, 20]

    pkg_w = tf.get_variable("i_item", [63002],
                            initializer=tf.constant_initializer(0.0))
    pkg_emb_w = tf.get_variable("i_id", [63002, params['embedding_size']],
                                initializer=tf.glorot_normal_initializer())
    pkgc_emb_w = tf.get_variable("i_cate", [802, params['embedding_size']],
                                 initializer=tf.glorot_normal_initializer())

    # pkg_emb_w = tf.get_variable("pkg_emb_w", [2360, params['embedding_size']])
    # pkgc_emb_w = tf.get_variable("pkgc_emb_w", [100, params['embedding_size']])
    # ssid_emb_w = tf.get_variable("ssid_emb_w", [100, params['embedding_size']])
    # soper_emb_w = tf.get_variable("soper_emb_w", [100, params['embedding_size']])
    i_b = tf.gather(pkg_w, features['i_id'])
    with tf.variable_scope("embedding_layer"):
        # imei_emb = tf.nn.embedding_lookup(imei_emb_w, features['imei_index'])

        pkg_emb = tf.nn.embedding_lookup(pkg_emb_w, features['i_id'])
        pkgc_emb = tf.nn.embedding_lookup(pkgc_emb_w, features['i_cate'])

        def _attention(feat_emb_w, hist_ids, item_emb):
            dense_ids = hist_ids
            dense_emb = tf.nn.embedding_lookup(feat_emb_w,
                                               dense_ids)  # None * P * K

            dense_mask = tf.expand_dims(tf.cast(dense_ids > 0, tf.float32),
                                        axis=-1)
            # dense_mask = tf.sequence_mask(dense_ids, ?)  # None * P
            padded_dim = tf.shape(dense_ids)[1]  # P
            hist_emb = tf.reshape(dense_emb,
                                  shape=[-1, params['embedding_size']])
            query_emb = tf.reshape(tf.tile(item_emb, [1, padded_dim]),
                                   shape=[-1, params['embedding_size']])
            # None * K --> (None * P) * K     注意跟dense_emb reshape顺序保持一致

            att_net = tf.concat([
                hist_emb, query_emb, hist_emb * query_emb, hist_emb - query_emb
            ],
                                axis=1)  # (None * P) * 3K
            for i in attention_layers:
                att_net = tf.layers.dense(att_net,
                                          units=i,
                                          activation=tf.nn.relu)
                # att_net = tf.layers.batch_normalization(att_net, training = (mode == estimator.ModeKeys.TRAIN))
                att_net = tf.layers.dropout(
                    att_net,
                    rate=params['dropout'],
                    training=(mode == estimator.ModeKeys.TRAIN))

            att_wgt = tf.layers.dense(att_net, units=1, activation=None)
            att_wgt = tf.reshape(att_wgt, shape=[-1, padded_dim,
                                                 1])  # None * P * 1
            wgt_emb = tf.multiply(dense_emb, att_wgt)  # None * P * K
            # dense_mask
            wgt_emb = tf.reduce_sum(tf.multiply(wgt_emb, dense_mask),
                                    1)  # None * K
            return wgt_emb

        pkg_emb_h = _attention(pkg_emb_w, features['u_iid_seq'], pkg_emb)
        pkgc_emb_h = _attention(pkgc_emb_w, features['u_icat_seq'], pkgc_emb)

    with tf.variable_scope("mlp_layer"):
        net = tf.concat([pkg_emb, pkg_emb_h, pkgc_emb_h], axis=1)

        for units in mlp_layers:
            net = tf.layers.dense(net, units=units, activation=tf.nn.relu)
            # net = tf.layers.batch_normalization(net, training = (mode == estimator.ModeKeys.TRAIN))
            net = tf.layers.dropout(
                net,
                rate=params['dropout'],
                training=(mode == estimator.ModeKeys.TRAIN))

        logits = tf.layers.dense(net, units=1, activation=None)
        logits = tf.reshape(logits, (-1, )) + i_b
        pred = tf.sigmoid(logits)

        predictions = {"prob": pred}
        export_outputs = {
            tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
            estimator.export.PredictOutput(predictions)
        }

        if mode == estimator.ModeKeys.PREDICT:
            return estimator.EstimatorSpec(mode=mode,
                                           predictions=predictions,
                                           export_outputs=export_outputs)

        loss = tf.reduce_mean(
            tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                    labels=tf.cast(
                                                        labels, tf.float32)))
        # loss += 0.01 * tf.nn.l2_loss(pkg_emb_w)
        # loss += 0.01 * tf.nn.l2_loss(pkgc_emb_w)

        eval_metric_ops = {
            "AUC": tf.metrics.auc(labels, pred),
            'Accuracy': tf.metrics.accuracy(labels, predictions=tf.round(pred))
        }

        if mode == estimator.ModeKeys.EVAL:
            return estimator.EstimatorSpec(mode=mode,
                                           predictions=predictions,
                                           loss=loss,
                                           eval_metric_ops=eval_metric_ops)

        optimizer = tf.train.AdamOptimizer(
            learning_rate=params['learning_rate'])
        train_op = optimizer.minimize(loss,
                                      global_step=tf.train.get_global_step())

        if mode == estimator.ModeKeys.TRAIN:
            return estimator.EstimatorSpec(mode=mode,
                                           predictions=predictions,
                                           loss=loss,
                                           train_op=train_op)
def model_fn_default(features: Dict[str, tf.Tensor],
                     labels: tf.Tensor,
                     mode: est.ModeKeys,
                     params: Dict[str, Any]):
    """

    :param features:
    :param labels:
    :param mode:
    :param params:
    :return:
    """
    network_fn = params.get('network_fn')
    network_params = params.get('network_params')
    learning_rate = params.get('learning_rate', 1e-3)
    _ii = ['MSE', 'RMSE', 'MAE', 'MAPE']
    inspection_indicators = [i.upper() for i in params.get('inspection_indicators', _ii)]

    if len(features.keys()) == 1:
        fea = features['input_0']
    else:
        fea = [features[i] for i in features.keys()]

    network = network_fn(**network_params)
    network.summary()

    if mode == est.ModeKeys.PREDICT:
        predictions = network(fea, training=False)

        return est.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            export_outputs={
                'result': est.export.PredictOutput(predictions)
            }
        )

    if mode == est.ModeKeys.TRAIN:
        predictions = network(fea, training=True)

        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        loss = tf.losses.mean_squared_error(labels, predictions)
        train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_or_create_global_step())

        tf.identity(learning_rate, 'learning_rate')

        _get_indicators(labels, predictions, inspection_indicators)

        return est.EstimatorSpec(
            mode=mode,
            loss=loss,
            train_op=train_op,
        )

    if mode == est.ModeKeys.EVAL:
        predictions = network(fea, training=False)

        loss = tf.losses.mean_squared_error(labels=labels, predictions=predictions)

        eval_metric_ops = _get_indicators(labels, predictions, inspection_indicators, training=False)

        return est.EstimatorSpec(
            mode=mode,
            loss=loss,
            eval_metric_ops=eval_metric_ops
        )
Ejemplo n.º 5
0
def model_fn(features, labels, mode, params):

    linear_net = tf.feature_column.input_layer(
        features, params['linear_feature_columns'])
    embedding_net = tf.feature_column.input_layer(
        features, params['embedding_feature_columns'])

    with tf.name_scope('linear_net'):
        y_1d = tf.layers.dense(linear_net, 1, activation=tf.nn.relu)

    with tf.variable_scope('second-order'):
        fm_net = tf.reshape(embedding_net, [
            -1,
            len(params['embedding_feature_columns']), params['embedding_size']
        ])

        fm_net_sum_square = tf.square(tf.reduce_sum(fm_net, axis=1))
        fm_net_square_sum = tf.reduce_sum(tf.square(fm_net), axis=1)
        y_2d = 0.5 * tf.reduce_sum(tf.subtract(fm_net_sum_square,
                                               fm_net_square_sum),
                                   axis=1,
                                   keep_dims=True)

    logits = tf.concat([y_1d, y_2d], axis=-1)
    logits = tf.layers.dense(logits, units=1, activation=None)
    pred = tf.sigmoid(logits)

    predictions = {"prob": pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
        estimator.export.PredictOutput(predictions)
    }

    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       export_outputs=export_outputs)

    loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                labels=tf.cast(
                                                    labels, tf.float32)))
    eval_metric_ops = {
        "AUC": tf.metrics.auc(labels, pred),
        'Accuracy': tf.metrics.accuracy(labels, predictions=tf.round(pred))
    }

    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       eval_metric_ops=eval_metric_ops)

    optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate'])
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       train_op=train_op)
Ejemplo n.º 6
0
def fm(features, labels, mode, params):

    # ---------- hyper-parameters ---------- #
    feature_size = params["feature_size"]
    field_size = params["field_size"]
    embed_size = params["embed_size"]
    loss_mode = params["loss_mode"]
    optimizer = params["optimizer"]
    learning_rate = params["learning_rate"]
    l2_reg_lambda = params["l2_reg_lambda"]

    # ---------- initial weights ----------- #
    # [numeric_feature, one-hot categorical_feature]统一做embedding
    coe_b = tf.get_variable(name="coe_b",
                            shape=[1],
                            initializer=tf.constant_initializer(0.0))
    coe_w = tf.get_variable(name="coe_w",
                            shape=[feature_size],
                            initializer=tf.glorot_normal_initializer())
    coe_v = tf.get_variable(name="coe_v",
                            shape=[feature_size, embed_size],
                            initializer=tf.glorot_normal_initializer())

    # ---------- reshape feature ----------- #
    feat_idx = features["feat_idx"]  # 非零特征位置[batch_size, field_size, 1]
    feat_idx = tf.reshape(feat_idx, shape=[-1, field_size])  # [Batch, Field]
    feat_val = features["feat_val"]  # 非零特征的值[batch_size, field_size, 1]
    feat_val = tf.reshape(feat_val, shape=[-1, field_size])  # [Batch, Field]

    # ------------- define f(x) ------------ #
    # FM: y = b + sum<wi,xi> + sum(<vi,vj>xi*xj)
    with tf.variable_scope("First-Order"):
        feat_wgt = tf.nn.embedding_lookup(coe_w, feat_idx)  # [Batch, Field]
        y_w = tf.reduce_sum(tf.multiply(feat_wgt, feat_val), 1)  # [Batch]

    with tf.variable_scope("Second-Order"):
        embeddings = tf.nn.embedding_lookup(coe_v,
                                            feat_idx)  # [Batch, Field, K]
        feat_vals = tf.reshape(feat_val, shape=[-1, field_size,
                                                1])  # [Batch, Field, 1]
        embeddings = tf.multiply(embeddings, feat_vals)  # [Batch, Field, K]
        sum_square = tf.square(tf.reduce_sum(embeddings, 1))  # [Batch, K]
        square_sum = tf.reduce_sum(tf.square(embeddings), 1)  # [Batch, K]
        y_v = 0.5 * tf.reduce_sum(tf.subtract(sum_square, square_sum),
                                  1)  # [Batch]

    with tf.variable_scope("FM-Out"):
        y_b = coe_b * tf.ones_like(y_w, dtype=tf.float32)  # [Batch]
        y_hat = y_b + y_w + y_v  # [Batch]
        y_pred = tf.nn.sigmoid(y_hat)  # [Batch]

    # ----- mode: predict/evaluate/train ----- #
    # predict: 不计算loss/metric; evaluate: 不进行梯度下降和参数更新

    # Provide an estimator spec for 'ModeKeys.PREDICT'
    predictions = {"prob": y_pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
        estimator.export.PredictOutput(predictions)
    }
    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       export_outputs=export_outputs)

    # Provide an estimator spec for 'ModeKeys.EVAL'
    if loss_mode == "log_loss":
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=y_hat)) +\
               l2_reg_lambda * tf.nn.l2_loss(coe_w) + l2_reg_lambda * tf.nn.l2_loss(coe_v)
    else:
        loss = tf.reduce_mean(tf.square(labels - y_pred))
    eval_metric_ops = {"auc": tf.metrics.auc(labels, y_pred)}
    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       eval_metric_ops=eval_metric_ops)

    # Provide an estimator spec for 'ModeKeys.TRAIN'
    if optimizer == "Adam":
        opt_mode = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                          beta1=0.9,
                                          beta2=0.999,
                                          epsilon=1e-8)
    elif optimizer == "Adagrad":
        opt_mode = tf.train.AdagradOptimizer(learning_rate=learning_rate,
                                             initial_accumulator_value=1e-8)
    elif optimizer == "Momentum":
        opt_mode = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                              momentum=0.95)
    elif optimizer == "Ftrl":
        opt_mode = tf.train.FtrlOptimizer(learning_rate)
    else:
        opt_mode = tf.train.GradientDescentOptimizer(
            learning_rate=learning_rate)
    train_op = opt_mode.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       train_op=train_op)
Ejemplo n.º 7
0
def nfm(features, labels, mode, params):

    # ---------- hyper-parameters ---------- #
    feature_size = params["feature_size"]
    field_size = params["field_size"]
    embed_size = params["embed_size"]
    loss_mode = params["loss_mode"]
    optimizer = params["optimizer"]
    learning_rate = params["learning_rate"]
    l2_reg_lambda = params["l2_reg_lambda"]
    layers = list(map(int, params["deep_layers"].split(',')))
    dropout = list(map(float, params["dropout"].split(',')))

    # ---------- initial weights ----------- #
    # [numeric_feature, one-hot categorical_feature]统一做embedding
    coe_b = tf.get_variable(name="coe_b",
                            shape=[1],
                            initializer=tf.constant_initializer(0.0))
    coe_w = tf.get_variable(name="coe_w",
                            shape=[feature_size],
                            initializer=tf.glorot_normal_initializer())
    coe_v = tf.get_variable(name="coe_v",
                            shape=[feature_size, embed_size],
                            initializer=tf.glorot_normal_initializer())

    # ---------- reshape feature ----------- #
    feat_idx = features["feat_idx"]  # 非零特征位置[batch_size, field_size, 1]
    feat_idx = tf.reshape(feat_idx, shape=[-1, field_size])  # [Batch, Field]
    feat_val = features["feat_val"]  # 非零特征的值[batch_size, field_size, 1]
    feat_val = tf.reshape(feat_val, shape=[-1, field_size])  # [Batch, Field]

    # ------------- define f(x) ------------ #
    with tf.variable_scope("First-Order"):
        feat_wgt = tf.nn.embedding_lookup(coe_w, feat_idx)  # [Batch, Field]
        y_w = tf.reduce_sum(tf.multiply(feat_wgt, feat_val), 1)  # [Batch]

    with tf.variable_scope("Bi-Interaction-Layer"):
        embeddings = tf.nn.embedding_lookup(coe_v,
                                            feat_idx)  # [Batch, Field, K]
        feat_vals = tf.reshape(feat_val, shape=[-1, field_size,
                                                1])  # [Batch, Field, 1]
        embeddings = tf.multiply(embeddings, feat_vals)  # [Batch, Field, K]
        sum_square = tf.square(tf.reduce_sum(embeddings, 1))  # [Batch, K]
        square_sum = tf.reduce_sum(tf.square(embeddings), 1)  # [Batch, K]
        bi_out = 0.5 * (tf.subtract(sum_square, square_sum))  # [Batch, K]

    with tf.variable_scope("Deep-Layer"):
        deep_inputs = bi_out
        # hidden layer
        for i in range(len(layers)):
            deep_inputs = tf.contrib.layers.fully_connected(
                inputs=deep_inputs,
                num_outputs=layers[i],
                scope="mlp_%d" % i,
                weights_regularizer=tf.contrib.layers.l2_regularizer(
                    l2_reg_lambda))
            if mode == estimator.ModeKeys.TRAIN:
                deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])

        # output layer
        y_d = tf.contrib.layers.fully_connected(
            inputs=deep_inputs,
            num_outputs=1,
            activation_fn=tf.identity,
            weights_regularizer=tf.contrib.layers.l2_regularizer(
                l2_reg_lambda),
            scope='deep_out')

    with tf.variable_scope("NFM-Out"):
        y_deep = tf.reshape(y_d, shape=[-1])
        y_bias = coe_b * tf.ones_like(y_w, dtype=tf.float32)  # [Batch]
        y_hat = y_bias + y_w + y_deep  # [Batch]
        y_pred = tf.nn.sigmoid(y_hat)  # [Batch]

    # ----- mode: predict/evaluate/train ----- #
    # predict: 不计算loss/metric; evaluate: 不进行梯度下降和参数更新

    # Provide an estimator spec for 'ModeKeys.PREDICT'
    predictions = {"prob": y_pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
        estimator.export.PredictOutput(predictions)
    }
    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       export_outputs=export_outputs)

    # Provide an estimator spec for 'ModeKeys.EVAL'
    if loss_mode == "log_loss":
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=y_hat)) +\
               l2_reg_lambda * tf.nn.l2_loss(coe_w) + l2_reg_lambda * tf.nn.l2_loss(coe_v)
    else:
        loss = tf.reduce_mean(tf.square(labels - y_pred))
    eval_metric_ops = {"auc": tf.metrics.auc(labels, y_pred)}
    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       eval_metric_ops=eval_metric_ops)

    # Provide an estimator spec for 'ModeKeys.TRAIN'
    if optimizer == "Adam":
        opt_mode = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                          beta1=0.9,
                                          beta2=0.999,
                                          epsilon=1e-8)
    elif optimizer == "Adagrad":
        opt_mode = tf.train.AdagradOptimizer(learning_rate=learning_rate,
                                             initial_accumulator_value=1e-8)
    elif optimizer == "Momentum":
        opt_mode = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                              momentum=0.95)
    elif optimizer == "Ftrl":
        opt_mode = tf.train.FtrlOptimizer(learning_rate)
    else:
        opt_mode = tf.train.GradientDescentOptimizer(
            learning_rate=learning_rate)
    train_op = opt_mode.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       train_op=train_op)
Ejemplo n.º 8
0
def fpnn(features, labels, mode, params):

    # ---------- hyper-parameters ---------- #
    algorithm = params["algorithm"]
    feature_size = params["feature_size"]
    field_size = params["field_size"]
    embed_size = params["embed_size"]
    loss_mode = params["loss_mode"]
    optimizer = params["optimizer"]
    learning_rate = params["learning_rate"]
    l2_reg_lambda = params["l2_reg_lambda"]
    layers = list(map(int, params["deep_layers"].split(',')))  # l1神经元数量等于D1长度
    dropout = list(map(float, params["dropout"].split(',')))

    # ---------- initial weights ----------- #
    # [numeric_feature, one-hot categorical_feature]统一做embedding
    coe_b = tf.get_variable(name="coe_b",
                            shape=[1],
                            initializer=tf.constant_initializer(0.0))
    coe_w = tf.get_variable(name="coe_w",
                            shape=[feature_size],
                            initializer=tf.glorot_normal_initializer())
    coe_v = tf.get_variable(name="coe_v",
                            shape=[feature_size, embed_size],
                            initializer=tf.glorot_normal_initializer())
    coe_line = tf.get_variable(name="coe_line",
                               shape=[layers[0], field_size, embed_size],
                               initializer=tf.glorot_normal_initializer())
    coe_ipnn = tf.get_variable(name="coe_ipnn",
                               shape=[layers[0], field_size],
                               initializer=tf.glorot_normal_initializer())
    coe_opnn = tf.get_variable(name="coe_opnn",
                               shape=[layers[0], embed_size, embed_size],
                               initializer=tf.glorot_normal_initializer())

    # ---------- reshape feature ----------- #
    feat_idx = features["feat_idx"]  # 非零特征位置[batch_size, field_size, 1]
    feat_idx = tf.reshape(feat_idx, shape=[-1, field_size])  # [Batch, Field]
    feat_val = features["feat_val"]  # 非零特征的值[batch_size, field_size, 1]
    feat_val = tf.reshape(feat_val, shape=[-1, field_size])  # [Batch, Field]

    # ------------- define f(x) ------------ #
    with tf.variable_scope("Linear-Part"):
        feat_wgt = tf.nn.embedding_lookup(coe_w, feat_idx)  # [Batch, Field]
        y_linear = tf.reduce_sum(tf.multiply(feat_wgt, feat_val), 1)  # [Batch]

    with tf.variable_scope("Embed-Layer"):
        embeddings = tf.nn.embedding_lookup(coe_v,
                                            feat_idx)  # [Batch, Field, K]
        feat_vals = tf.reshape(feat_val, shape=[-1, field_size,
                                                1])  # [Batch, Field, 1]
        embeddings = tf.multiply(embeddings, feat_vals)  # [Batch, Field, K]

    with tf.variable_scope("Product-Layer"):
        if algorithm == "FNN":
            feat_vec = tf.reshape(embeddings,
                                  shape=[-1, field_size * embed_size])
            feat_bias = coe_b * tf.reshape(
                tf.ones_like(y_linear, dtype=tf.float32), shape=[-1, 1])
            deep_inputs = tf.concat([feat_wgt, feat_vec, feat_bias],
                                    1)  # [Batch, (Field+1)*K+1]
        elif algorithm == "IPNN":
            # linear signal
            z = tf.reshape(embeddings,
                           shape=[-1,
                                  field_size * embed_size])  # [Batch, Field*K]
            wz = tf.reshape(coe_line,
                            shape=[-1,
                                   field_size * embed_size])  # [D1, Field*K]
            lz = tf.matmul(z, tf.transpose(wz))  # [Batch, D1]

            # quadratic signal
            row_i = []
            col_j = []
            for i in range(field_size - 1):
                for j in range(i + 1, field_size):
                    row_i.append(i)
                    col_j.append(j)
            fi = tf.gather(embeddings, row_i,
                           axis=1)  # 根据索引从参数轴上收集切片[Batch, num_pairs, K]
            fj = tf.gather(embeddings, col_j,
                           axis=1)  # 根据索引从参数轴上收集切片[Batch, num_pairs, K]

            # p_ij = g(fi,fj)=<fi,fj> 特征i和特征j的隐向量的内积
            p = tf.reduce_sum(tf.multiply(fi, fj),
                              2)  # p矩阵展成向量[Batch, num_pairs]
            wpi = tf.gather(coe_ipnn, row_i,
                            axis=1)  # 根据索引从参数轴上收集切片[D1, num_pairs]
            wpj = tf.gather(coe_ipnn, col_j,
                            axis=1)  # 根据索引从参数轴上收集切片[D1, num_pairs]
            wp = tf.multiply(wpi, wpj)  # D1个W矩阵组成的矩阵(每行代表一个W)[D1, num_pairs]
            lp = tf.matmul(p, tf.transpose(wp))  # [Batch, D1]

            lb = coe_b * tf.reshape(tf.ones_like(y_linear, dtype=tf.float32),
                                    shape=[-1, 1])
            deep_inputs = lz + lp + lb  # [Batch, D1]
        elif algorithm == "OPNN":
            # linear signal
            z = tf.reshape(embeddings,
                           shape=[-1,
                                  field_size * embed_size])  # [Batch, Field*K]
            wz = tf.reshape(coe_line,
                            shape=[-1,
                                   field_size * embed_size])  # [D1, Field*K]
            lz = tf.matmul(z, tf.transpose(wz))  # [Batch, D1]

            # quadratic signal
            f_sigma = tf.reduce_sum(embeddings, axis=1)  # [Batch, K]
            p = tf.matmul(tf.reshape(f_sigma, shape=[-1, embed_size, 1]),
                          tf.reshape(f_sigma,
                                     shape=[-1, 1,
                                            embed_size]))  # [Batch, K, K]
            p = tf.reshape(p, shape=[-1,
                                     embed_size * embed_size])  # [Batch, K*K]
            wp = tf.reshape(coe_opnn,
                            shape=[-1, embed_size * embed_size])  # [D1, K*K]
            lp = tf.matmul(p, tf.transpose(wp))  # [Batch, D1]

            lb = coe_b * tf.reshape(tf.ones_like(y_linear, dtype=tf.float32),
                                    shape=[-1, 1])
            deep_inputs = lz + lp + lb  # [Batch, D1]

    with tf.variable_scope("Deep-Layer"):
        # hidden layer
        for i in range(len(layers)):
            deep_inputs = tf.contrib.layers.fully_connected(
                inputs=deep_inputs,
                num_outputs=layers[i],
                scope="mlp_%d" % i,
                weights_regularizer=tf.contrib.layers.l2_regularizer(
                    l2_reg_lambda))
            if mode == estimator.ModeKeys.TRAIN:
                deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])

        # output layer
        y_d = tf.contrib.layers.fully_connected(
            inputs=deep_inputs,
            num_outputs=1,
            activation_fn=tf.identity,
            weights_regularizer=tf.contrib.layers.l2_regularizer(
                l2_reg_lambda),
            scope='deep_out')

    with tf.variable_scope("FPNN-Out"):
        y_hat = tf.reshape(y_d, shape=[-1])
        y_pred = tf.nn.sigmoid(y_hat)

    # ----- mode: predict/evaluate/train ----- #
    # predict: 不计算loss/metric; evaluate: 不进行梯度下降和参数更新

    # Provide an estimator spec for 'ModeKeys.PREDICT'
    predictions = {"prob": y_pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
        estimator.export.PredictOutput(predictions)
    }
    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       export_outputs=export_outputs)

    # Provide an estimator spec for 'ModeKeys.EVAL'
    if loss_mode == "log_loss":
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=y_hat)) +\
               l2_reg_lambda * tf.nn.l2_loss(coe_w) + l2_reg_lambda * tf.nn.l2_loss(coe_v)
    else:
        loss = tf.reduce_mean(tf.square(labels - y_pred))
    eval_metric_ops = {"auc": tf.metrics.auc(labels, y_pred)}
    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       eval_metric_ops=eval_metric_ops)

    # Provide an estimator spec for 'ModeKeys.TRAIN'
    if optimizer == "Adam":
        opt_mode = tf.train.AdamOptimizer(learning_rate=learning_rate,
                                          beta1=0.9,
                                          beta2=0.999,
                                          epsilon=1e-8)
    elif optimizer == "Adagrad":
        opt_mode = tf.train.AdagradOptimizer(learning_rate=learning_rate,
                                             initial_accumulator_value=1e-8)
    elif optimizer == "Momentum":
        opt_mode = tf.train.MomentumOptimizer(learning_rate=learning_rate,
                                              momentum=0.95)
    elif optimizer == "Ftrl":
        opt_mode = tf.train.FtrlOptimizer(learning_rate)
    else:
        opt_mode = tf.train.GradientDescentOptimizer(
            learning_rate=learning_rate)
    train_op = opt_mode.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       train_op=train_op)
Ejemplo n.º 9
0
def model_fn(features, labels, mode, params):
    layers = list(map(int, params["deep_layers"].split(',')))

    # Not following the paper using dense feature here.
    # Due to numerical stability
    linear_net = tf.feature_column.input_layer(
        features, params['linear_feature_columns'])
    embedding_net = tf.feature_column.input_layer(
        features, params['embedding_feature_columns'])

    x0 = embedding_net

    cross_dim = x0.shape[1]

    # with tf.name_scope('linear_net'):
    #     linear_y = tf.layers.dense(linear_net, 1, activation=tf.nn.relu)

    with tf.variable_scope('cross_layers'):
        xl = x0
        for i in range(FLAGS.cross_layers):
            # wl = tf.reshape(cross_weight[i], shape=[-1, 1])  # (dim * 1)
            # xlw = tf.matmul(xl, wl)  # (? * 1)
            # xl = x0 * xlw + xl + cross_bias[i]  # (? * dim)
            with tf.variable_scope('cross_{}'.format(i)):
                w = tf.get_variable("weight", [cross_dim],
                                    initializer=tf.glorot_normal_initializer())
                b = tf.get_variable("bias", [cross_dim],
                                    initializer=tf.glorot_normal_initializer())
                xw = tf.tensordot(tf.reshape(xl, [-1, 1, cross_dim]), w, 1)
                xl = xw * x0 + xl + b

    with tf.variable_scope('deep_layers'):
        dnn_net = x0
        for i in layers:
            dnn_net = tf.layers.dense(dnn_net, i, activation=tf.nn.relu)
            dnn_net = tf.layers.batch_normalization(
                dnn_net, training=(mode == estimator.ModeKeys.TRAIN))
            dnn_net = tf.layers.dropout(
                dnn_net,
                rate=params['dropout'],
                training=(mode == estimator.ModeKeys.TRAIN))

    logits = tf.concat([dnn_net, xl], axis=-1)
    logits = tf.layers.dense(logits, units=1, activation=None)
    pred = tf.sigmoid(logits)

    predictions = {"prob": pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
        estimator.export.PredictOutput(predictions)
    }

    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       export_outputs=export_outputs)

    loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                labels=tf.cast(
                                                    labels, tf.float32)))
    eval_metric_ops = {
        "AUC": tf.metrics.auc(labels, pred),
        'Accuracy': tf.metrics.accuracy(labels, predictions=tf.round(pred))
    }

    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       eval_metric_ops=eval_metric_ops)

    optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate'])
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(mode=mode,
                                       predictions=predictions,
                                       loss=loss,
                                       train_op=train_op)
Ejemplo n.º 10
0
def model_fn(features, labels, mode, params):
    """
    Build model for estimator.
    @param features:
    @param labels:
    @param mode:
    @param params:
    @return:
    """
    layers = list(map(int, params["deep_layers"].split(',')))

    embedding_feature_columns = params['embedding_feature_columns']
    embedding_features = feature_column.input_layer(features, embedding_feature_columns)

    linear_feature_columns = params['linear_feature_columns']
    linear_features = feature_column.input_layer(features, linear_feature_columns)

    with tf.variable_scope('first-order'):
        y_1d = tf.layers.dense(linear_features, 1, activation=tf.nn.relu)
    with tf.variable_scope('second-order'):
        fm_net = tf.reshape(embedding_features,
                            [-1, len(params['embedding_feature_columns']), params['embedding_size']])

        fm_net_sum_square = tf.square(tf.reduce_sum(fm_net, axis=1))
        fm_net_square_sum = tf.reduce_sum(tf.square(fm_net), axis=1)
        y_2d = 0.5 * tf.reduce_sum(tf.subtract(fm_net_sum_square, fm_net_square_sum), axis=1, keep_dims=True)

    with tf.variable_scope('dnn'):
        dnn_net = tf.reshape(embedding_features,
                             shape=[-1, len(params['embedding_feature_columns']) * params['embedding_size']])
        for i in layers:
            dnn_net = tf.layers.dense(dnn_net, i, activation=tf.nn.relu)

            dnn_net = tf.layers.batch_normalization(dnn_net, training=(mode == estimator.ModeKeys.TRAIN))
            dnn_net = tf.layers.dropout(dnn_net, rate=params['dropout'], training=(mode == estimator.ModeKeys.TRAIN))
        y_dnn = tf.layers.dense(dnn_net, 1, activation=tf.nn.relu)

    logits = tf.concat([y_1d, y_2d, y_dnn], axis=-1)
    logits = tf.layers.dense(logits, units=1)
    logits = tf.reshape(logits, (-1,))
    pred = tf.sigmoid(logits)

    predictions = {"prob": pred}
    export_outputs = {
        tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: estimator.export.PredictOutput(
            predictions)}

    if mode == estimator.ModeKeys.PREDICT:
        return estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            export_outputs=export_outputs)

    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
        logits=logits,
        labels=tf.cast(labels, tf.float32))
    )
    eval_metric_ops = {
        "AUC": tf.metrics.auc(labels, pred),
        'Accuracy': tf.metrics.accuracy(labels, predictions=tf.round(pred))
    }

    if mode == estimator.ModeKeys.EVAL:
        return estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            loss=loss,
            eval_metric_ops=eval_metric_ops)

    optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate'])
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())

    if mode == estimator.ModeKeys.TRAIN:
        return estimator.EstimatorSpec(
            mode=mode,
            predictions=predictions,
            loss=loss,
            train_op=train_op)