Ejemplo n.º 1
0
 def test_train_preprocess_fn_return_dataset_element_spec(self):
   ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
   train_preprocess_fn = stackoverflow_dataset.create_train_dataset_preprocess_fn(
       client_batch_size=32,
       client_epochs_per_round=1,
       max_seq_len=10,
       max_training_elements_per_user=100,
       vocab=['one', 'must'])
   train_preprocessed_ds = train_preprocess_fn(ds)
   self.assertEqual(train_preprocessed_ds.element_spec,
                    (tf.TensorSpec(shape=[None, 10], dtype=tf.int64),
                     tf.TensorSpec(shape=[None, 10], dtype=tf.int64)))
Ejemplo n.º 2
0
 def test_train_preprocess_fn_returns_correct_sequence(self):
   ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
   train_preprocess_fn = stackoverflow_dataset.create_train_dataset_preprocess_fn(
       client_batch_size=32,
       client_epochs_per_round=1,
       max_seq_len=6,
       max_training_elements_per_user=100,
       vocab=['one', 'must'])
   train_preprocessed_ds = train_preprocess_fn(ds)
   element = next(iter(train_preprocessed_ds))
   # BOS is len(vocab)+2, EOS is len(vocab)+3, pad is 0, OOV is len(vocab)+1
   self.assertAllEqual(
       self.evaluate(element[0]), np.array([[4, 1, 2, 3, 5, 0]]))
 def test_train_preprocess_fn_returns_correct_sequence_oov_buckets(self):
     ds = tf.data.Dataset.from_tensor_slices(TEST_DATA)
     train_preprocess_fn = stackoverflow_dataset.create_train_dataset_preprocess_fn(
         client_batch_size=32,
         client_epochs_per_round=1,
         max_seq_len=6,
         max_training_elements_per_user=100,
         vocab=['one', 'must'],
         num_oov_buckets=3)
     train_preprocessed_ds = train_preprocess_fn(ds)
     element = next(iter(train_preprocessed_ds))
     # BOS is len(vocab)+3+1
     self.assertEqual(self.evaluate(element[0])[0][0], 6)
     self.assertEqual(self.evaluate(element[0])[0][1], 1)
     self.assertEqual(self.evaluate(element[0])[0][2], 2)
     # OOV is [len(vocab)+1, len(vocab)+2, len(vocab)+3]
     self.assertIn(self.evaluate(element[0])[0][3], [3, 4, 5])
     # EOS is len(vocab)+3+2
     self.assertEqual(self.evaluate(element[0])[0][4], 7)
     # pad is 0
     self.assertEqual(self.evaluate(element[0])[0][5], 0)
Ejemplo n.º 4
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        assign_weights_fn: Callable[[Any, tf.keras.Model], None],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        vocab_size: Optional[int] = 10000,
        num_oov_buckets: Optional[int] = 1,
        sequence_length: Optional[int] = 20,
        max_elements_per_user: Optional[int] = 1000,
        num_validation_examples: Optional[int] = 10000,
        embedding_size: Optional[int] = 96,
        latent_size: Optional[int] = 670,
        num_layers: Optional[int] = 1,
        shared_embedding: Optional[bool] = False,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_so_nwp',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the Stack Overflow next word prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `tensorflow_federated.python.research.utils.training_loop`.

   We assume that the iterative process has the following functional type
   signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and a `dataset_preprocess_comp`, and returns a
      `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    assign_weights_fn: A function that accepts the server state `S` and a
      `tf.keras.Model`, and updates the weights in the Keras model. This is used
      to do evaluation using Keras.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `tensorflow_federated/python/research/utils/training_utils.py`.
  """

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=vocab_size,
        num_oov_buckets=num_oov_buckets,
        embedding_size=embedding_size,
        latent_size=latent_size,
        num_layers=num_layers,
        shared_embedding=shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_dataset.get_special_tokens(
        vocab_size, num_oov_buckets)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
        ]

    train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

    # TODO(b/161914546): consider moving evaluation to use
    # `tff.learning.build_federated_evaluation` to get metrics over client
    # distributions, as well as the example weight means from this centralized
    # evaluation.
    _, validation_dataset, test_dataset = stackoverflow_dataset.get_centralized_datasets(
        vocab_size=vocab_size,
        max_seq_len=sequence_length,
        train_batch_size=client_batch_size,
        max_validation_batches=max_eval_batches,
        max_test_batches=max_eval_batches,
        num_validation_examples=num_validation_examples,
        num_oov_buckets=num_oov_buckets)

    train_dataset_preprocess_comp = stackoverflow_dataset.create_train_dataset_preprocess_fn(
        vocab=stackoverflow_dataset.create_vocab(vocab_size),
        num_oov_buckets=num_oov_buckets,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_seq_len=sequence_length,
        max_training_elements_per_user=max_elements_per_user,
        max_batches_per_user=max_batches_per_client)

    input_spec = train_dataset_preprocess_comp.type_signature.result.element

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    training_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
        train_dataset_preprocess_comp, training_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=train_clientdata,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder,
        assign_weights_to_keras_model=assign_weights_fn)

    test_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder,
        assign_weights_to_keras_model=assign_weights_fn)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
Ejemplo n.º 5
0
def main(argv):
  if len(argv) > 1:
    raise app.UsageError('Expected no command-line arguments, '
                         'got: {}'.format(argv))

  model_builder = functools.partial(
      stackoverflow_models.create_recurrent_model,
      vocab_size=FLAGS.vocab_size,
      embedding_size=FLAGS.embedding_size,
      latent_size=FLAGS.latent_size,
      num_layers=FLAGS.num_layers,
      shared_embedding=FLAGS.shared_embedding)

  loss_builder = functools.partial(
      tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

  pad_token, oov_token, _, eos_token = stackoverflow_dataset.get_special_tokens(
      FLAGS.vocab_size)

  def metrics_builder():
    return [
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_with_oov', masked_tokens=[pad_token]),
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov', masked_tokens=[pad_token, oov_token]),
        # Notice BOS never appears in ground truth.
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov_or_eos',
            masked_tokens=[pad_token, oov_token, eos_token]),
        keras_metrics.NumBatchesCounter(),
        keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
    ]

  dataset_vocab = stackoverflow_dataset.create_vocab(FLAGS.vocab_size)

  train_clientdata, _, test_clientdata = (
      tff.simulation.datasets.stackoverflow.load_data())

  # Split the test data into test and validation sets.
  # TODO(b/161914546): consider moving evaluation to use
  # `tff.learning.build_federated_evaluation` to get metrics over client
  # distributions, as well as the example weight means from this centralized
  # evaluation.
  base_test_dataset = test_clientdata.create_tf_dataset_from_all_clients()
  preprocess_val_and_test = stackoverflow_dataset.create_test_dataset_preprocess_fn(
      dataset_vocab, FLAGS.sequence_length)
  test_set = preprocess_val_and_test(
      base_test_dataset.skip(FLAGS.num_validation_examples))
  validation_set = preprocess_val_and_test(
      base_test_dataset.take(FLAGS.num_validation_examples))

  train_dataset_preprocess_comp = stackoverflow_dataset.create_train_dataset_preprocess_fn(
      vocab=stackoverflow_dataset.create_vocab(FLAGS.vocab_size),
      client_batch_size=FLAGS.client_batch_size,
      client_epochs_per_round=FLAGS.client_epochs_per_round,
      max_seq_len=FLAGS.sequence_length,
      max_training_elements_per_user=FLAGS.max_elements_per_user)

  def client_weight_fn(local_outputs):
    # Num_tokens is a tensor with type int64[1], to use as a weight need
    # a float32 scalar.
    return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

  training_process = iterative_process_builder.from_flags(
      input_spec=None,  # type pulled from train_dataset_preproces_comp.
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder,
      client_weight_fn=client_weight_fn,
      dataset_preprocess_comp=train_dataset_preprocess_comp)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      train_dataset=train_clientdata,
      train_clients_per_round=FLAGS.clients_per_round,
      random_seed=FLAGS.client_datasets_random_seed)

  assign_weights_fn = fed_avg_schedule.ServerState.assign_weights_to_keras_model

  evaluate_fn = training_utils.build_evaluate_fn(
      model_builder=model_builder,
      eval_dataset=validation_set,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder,
      assign_weights_to_keras_model=assign_weights_fn)

  test_fn = training_utils.build_evaluate_fn(
      model_builder=model_builder,
      # Use both val and test for symmetry with other experiments, which
      # evaluate on the entire test set.
      eval_dataset=validation_set.concatenate(test_set),
      loss_builder=loss_builder,
      metrics_builder=metrics_builder,
      assign_weights_to_keras_model=assign_weights_fn)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      training_process, client_datasets_fn, evaluate_fn, test_fn=test_fn)