Ejemplo n.º 1
0
 def transform_by_kumaraswamy(x, feature_ndims, example_ndims):
   """Apply a Kumaraswamy bijector to features."""
   concentration1 = util.pad_shape_with_ones(
       self.concentration1,
       example_ndims,
       start=-(feature_ndims + 1))
   concentration0 = util.pad_shape_with_ones(
       self.concentration0,
       example_ndims,
       start=-(feature_ndims + 1))
   bij = kumaraswamy_cdf.KumaraswamyCDF(
       concentration1, concentration0, validate_args=validate_args)
   return bij.forward(x)
Ejemplo n.º 2
0
  def __init__(self,
               concentration1=1.,
               concentration0=1.,
               validate_args=False,
               allow_nan_stats=True,
               name='Kumaraswamy'):
    """Initialize a batch of Kumaraswamy distributions.

    Args:
      concentration1: Positive floating-point `Tensor` indicating mean
        number of successes; aka 'alpha'. Implies `self.dtype` and
        `self.batch_shape`, i.e.,
        `concentration1.shape = [N1, N2, ..., Nm] = self.batch_shape`.
      concentration0: Positive floating-point `Tensor` indicating mean
        number of failures; aka 'beta'. Otherwise has same semantics as
        `concentration1`.
      validate_args: Python `bool`, default `False`. When `True` distribution
        parameters are checked for validity despite possibly degrading runtime
        performance. When `False` invalid inputs may silently render incorrect
        outputs.
      allow_nan_stats: Python `bool`, default `True`. When `True`, statistics
        (e.g., mean, mode, variance) use the value '`NaN`' to indicate the
        result is undefined. When `False`, an exception is raised if one or
        more of the statistic's batch members are undefined.
      name: Python `str` name prefixed to Ops created by this class.
    """
    parameters = dict(locals())
    with tf.name_scope(name) as name:
      dtype = dtype_util.common_dtype([concentration1, concentration0],
                                      dtype_hint=tf.float32)
      concentration1 = tensor_util.convert_nonref_to_tensor(
          concentration1, name='concentration1', dtype=dtype)
      concentration0 = tensor_util.convert_nonref_to_tensor(
          concentration0, name='concentration0', dtype=dtype)
      self._kumaraswamy_cdf = kumaraswamy_cdf.KumaraswamyCDF(
          concentration1=concentration1,
          concentration0=concentration0,
          validate_args=validate_args)
      batch_shape = distribution_util.get_broadcast_shape(
          concentration1, concentration0)
      super(Kumaraswamy, self).__init__(
          # TODO(b/137665504): Use batch-adding meta-distribution to set the
          # batch shape instead of tf.zeros.
          distribution=uniform.Uniform(
              low=tf.zeros(batch_shape, dtype=dtype),
              high=tf.ones([], dtype=dtype),
              allow_nan_stats=allow_nan_stats),
          bijector=invert.Invert(
              self._kumaraswamy_cdf, validate_args=validate_args),
          parameters=parameters,
          name=name)