def testUniformUniformKLFinite(self):
        batch_size = 6

        a_low = -1.0 * np.arange(1, batch_size + 1)
        a_high = np.array([1.0] * batch_size)
        b_low = -2.0 * np.arange(1, batch_size + 1)
        b_high = np.array([2.0] * batch_size)
        a = tfd.Uniform(low=a_low, high=a_high, validate_args=True)
        b = tfd.Uniform(low=b_low, high=b_high, validate_args=True)

        true_kl = np.log(b_high - b_low) - np.log(a_high - a_low)

        kl = tfd.kl_divergence(a, b)

        # This is essentially an approximated integral from the direct definition
        # of KL divergence.
        x = a.sample(int(1e4), seed=test_util.test_seed())
        kl_sample = tf.reduce_mean(a.log_prob(x) - b.log_prob(x), axis=0)

        kl_, kl_sample_ = self.evaluate([kl, kl_sample])
        self.assertAllClose(true_kl, kl_, atol=2e-15)
        self.assertAllClose(true_kl, kl_sample_, atol=0.0, rtol=1e-1)

        zero_kl = tfd.kl_divergence(a, a)
        true_zero_kl_, zero_kl_ = self.evaluate(
            [tf.zeros_like(true_kl), zero_kl])
        self.assertAllEqual(true_zero_kl_, zero_kl_)
    def testUniformAssertMaxGtMin(self):
        a_v = np.array([1.0, 1.0, 1.0], dtype=np.float32)
        b_v = np.array([1.0, 2.0, 3.0], dtype=np.float32)

        with self.assertRaisesOpError('not defined when `low` >= `high`'):
            uniform = tfd.Uniform(low=a_v, high=b_v, validate_args=True)
            self.evaluate(uniform.mean())
    def _testUniformSampleMultiDimensional(self):
        # DISABLED: Please enable this test once b/issues/30149644 is resolved.
        batch_size = 2
        a_v = [3.0, 22.0]
        b_v = [13.0, 35.0]
        a = tf.constant([a_v] * batch_size)
        b = tf.constant([b_v] * batch_size)

        uniform = tfd.Uniform(low=a, high=b, validate_args=True)

        n_v = 100000
        n = tf.constant(n_v)
        samples = uniform.sample(n, seed=test_util.test_seed())
        self.assertEqual(samples.shape, (n_v, batch_size, 2))

        sample_values = self.evaluate(samples)

        self.assertFalse(
            np.any(sample_values[:, 0, 0] < a_v[0])
            or np.any(sample_values[:, 0, 0] >= b_v[0]))
        self.assertFalse(
            np.any(sample_values[:, 0, 1] < a_v[1])
            or np.any(sample_values[:, 0, 1] >= b_v[1]))

        self.assertAllClose(sample_values[:, 0, 0].mean(),
                            (a_v[0] + b_v[0]) / 2,
                            atol=1e-2)
        self.assertAllClose(sample_values[:, 0, 1].mean(),
                            (a_v[1] + b_v[1]) / 2,
                            atol=1e-2)
Ejemplo n.º 4
0
 def make_dataset(self, n, d, link, offset=None, scale=1.):
     seed = tfd.SeedStream(seed=213356351,
                           salt='tfp.glm.fisher_scoring_test')
     model_coefficients = tfd.Uniform(low=np.array(-0.5, self.dtype),
                                      high=np.array(0.5,
                                                    self.dtype)).sample(
                                                        d, seed=seed())
     radius = np.sqrt(2.)
     model_coefficients *= radius / tf.linalg.norm(
         tensor=model_coefficients)
     model_matrix = tfd.Normal(loc=np.array(0, self.dtype),
                               scale=np.array(1, self.dtype)).sample(
                                   [n, d], seed=seed())
     scale = tf.convert_to_tensor(value=scale, dtype=self.dtype)
     linear_response = tf.tensordot(model_matrix,
                                    model_coefficients,
                                    axes=[[1], [0]])
     if offset is not None:
         linear_response += offset
     if link == 'linear':
         response = tfd.Normal(loc=linear_response,
                               scale=scale).sample(seed=seed())
     elif link == 'probit':
         response = tf.cast(
             tfd.Normal(loc=linear_response,
                        scale=scale).sample(seed=seed()) > 0, self.dtype)
     elif link == 'logit':
         response = tfd.Bernoulli(logits=linear_response).sample(
             seed=seed())
     else:
         raise ValueError('unrecognized true link: {}'.format(link))
     return model_matrix, response, model_coefficients, linear_response
 def testUniformRange(self):
     a = 3.0
     b = 10.0
     uniform = tfd.Uniform(low=a, high=b, validate_args=True)
     self.assertAllClose(a, self.evaluate(uniform.low))
     self.assertAllClose(b, self.evaluate(uniform.high))
     self.assertAllClose(b - a, self.evaluate(uniform.range()))
 def testAssertValidSample(self):
     dist = tfd.Uniform(low=2., high=5., validate_args=True)
     with self.assertRaisesOpError(
             'must be greater than or equal to `low`'):
         self.evaluate(dist.cdf([2.3, 1.7, 4.]))
     with self.assertRaisesOpError('must be less than or equal to `high`'):
         self.evaluate(dist.survival_function([2.3, 5.2, 4.]))
    def testUniformEntropy(self):
        a_v = np.array([1.0, 1.0, 1.0])
        b_v = np.array([[1.5, 2.0, 3.0]])
        uniform = tfd.Uniform(low=a_v, high=b_v, validate_args=True)

        expected_entropy = np.log(b_v - a_v)
        self.assertAllClose(expected_entropy, self.evaluate(uniform.entropy()))
Ejemplo n.º 8
0
  def test_multipart_bijector(self):
    seed_stream = test_util.test_seed_stream()

    prior = tfd.JointDistributionSequential([
        tfd.Gamma(1., 1.),
        lambda scale: tfd.Uniform(0., scale),
        lambda concentration: tfd.CholeskyLKJ(4, concentration),
    ], validate_args=True)
    likelihood = lambda corr: tfd.MultivariateNormalTriL(scale_tril=corr)
    obs = self.evaluate(
        likelihood(
            prior.sample(seed=seed_stream())[-1]).sample(seed=seed_stream()))

    bij = prior.experimental_default_event_space_bijector()

    def target_log_prob(scale, conc, corr):
      return prior.log_prob(scale, conc, corr) + likelihood(corr).log_prob(obs)
    kernel = tfp.mcmc.HamiltonianMonteCarlo(target_log_prob,
                                            num_leapfrog_steps=3, step_size=.5)
    kernel = tfp.mcmc.TransformedTransitionKernel(kernel, bij)

    init = self.evaluate(
        tuple(tf.random.uniform(s, -2., 2., seed=seed_stream())
              for s in bij.inverse_event_shape(prior.event_shape)))
    state = bij.forward(init)
    kr = kernel.bootstrap_results(state)
    next_state, next_kr = kernel.one_step(state, kr, seed=seed_stream())
    self.evaluate((state, kr, next_state, next_kr))
    expected = (target_log_prob(*state) -
                bij.inverse_log_det_jacobian(state, [0, 0, 2]))
    actual = kernel._inner_kernel.target_log_prob_fn(*init)  # pylint: disable=protected-access
    self.assertAllClose(expected, actual)
    def testUniformBroadcasting(self):
        a = 10.0
        b = [11.0, 20.0]
        uniform = tfd.Uniform(a, b, validate_args=False)

        pdf = uniform.prob([[10.5, 11.5], [9.0, 19.0], [10.5, 21.0]])
        expected_pdf = np.array([[1.0, 0.1], [0.0, 0.1], [1.0, 0.0]])
        self.assertAllClose(expected_pdf, self.evaluate(pdf))
 def testModifiedVariableAssertionSingleVar(self):
     low = tf.Variable(0.)
     high = 1.
     self.evaluate(low.initializer)
     uniform = tfd.Uniform(low=low, high=high, validate_args=True)
     with self.assertRaisesOpError('not defined when `low` >= `high`'):
         with tf.control_dependencies([low.assign(2.)]):
             self.evaluate(uniform.mean())
Ejemplo n.º 11
0
 def testModifiedVariableAssertion(self):
     low = tf.Variable(0.)
     high = tf.Variable(1.)
     self.evaluate([low.initializer, high.initializer])
     uniform = tfd.Uniform(low=low, high=high, validate_args=True)
     with self.assertRaisesOpError('not defined when low >= high'):
         with tf.control_dependencies([low.assign(2.)]):
             self.evaluate(uniform.mean())
Ejemplo n.º 12
0
 def testFullyReparameterized(self):
     a = tf.constant(0.1)
     b = tf.constant(0.8)
     _, [grad_a, grad_b] = tfp.math.value_and_gradient(
         lambda a_, b_: (  # pylint: disable=g-long-lambda
             tfd.Uniform(a_, b_).sample(100, seed=test_util.test_seed())),
         [a, b])
     self.assertIsNotNone(grad_a)
     self.assertIsNotNone(grad_b)
    def testUniformShape(self):
        a = tf.constant([-3.0] * 5)
        b = tf.constant(11.0)
        uniform = tfd.Uniform(low=a, high=b, validate_args=True)

        self.assertEqual(self.evaluate(uniform.batch_shape_tensor()), (5, ))
        self.assertEqual(uniform.batch_shape, tf.TensorShape([5]))
        self.assertAllEqual(self.evaluate(uniform.event_shape_tensor()), [])
        self.assertEqual(uniform.event_shape, tf.TensorShape([]))
Ejemplo n.º 14
0
 def testUniformQuantile(self):
   low = tf.reshape(tf.linspace(0., 1., 6), [2, 1, 3])
   high = tf.reshape(tf.linspace(1.5, 2.5, 6), [1, 2, 3])
   uniform = tfd.Uniform(low=low, high=high, validate_args=True)
   expected_quantiles = tf.reshape(tf.linspace(1.01, 1.49, 24), [2, 2, 2, 3])
   cumulative_densities = uniform.cdf(expected_quantiles)
   actual_quantiles = uniform.quantile(cumulative_densities)
   self.assertAllClose(self.evaluate(expected_quantiles),
                       self.evaluate(actual_quantiles))
 def testSupportBijectorOutsideRange(self):
     low = np.array([1., 2., 3., -5.])
     high = np.array([6., 7., 6., 1.])
     dist = tfd.Uniform(low=low, high=high, validate_args=False)
     eps = 1e-6
     x = np.array([1. - eps, 1.5, 6. + eps, -5. - eps])
     bijector_inverse_x = dist.experimental_default_event_space_bijector(
     ).inverse(x)
     self.assertAllNan(self.evaluate(bijector_inverse_x))
Ejemplo n.º 16
0
 def testReproducible(self):
   u = dtc._TensorCoercible(tfd.Uniform(low=-100., high=100),
                            tfd.Distribution.sample)
   # Small scale means only the mean really matters.
   x = tfd.Normal(loc=u, scale=0.0001)
   [u_, x1_, x2_] = self.evaluate([
       tf.convert_to_tensor(x.loc), x.sample(), x.sample()])
   self.assertNear(u_, x1_, err=0.01)
   self.assertNear(u_, x2_, err=0.01)
    def testUniformPDFWithScalarEndpoint(self):
        a = tf.constant([0.0, 5.0])
        b = tf.constant(10.0)
        uniform = tfd.Uniform(low=a, high=b, validate_args=True)

        x = np.array([0.0, 8.0], dtype=np.float32)
        expected_pdf = np.array([1.0 / (10.0 - 0.0), 1.0 / (10.0 - 5.0)])

        pdf = uniform.prob(x)
        self.assertAllClose(expected_pdf, self.evaluate(pdf))
Ejemplo n.º 18
0
  def test_docstring_shapes(self):
    d = tfd.BatchBroadcast(tfd.Normal(tf.range(3.), 1.), [2, 3])
    self.assertEqual([2, 3], d.batch_shape)
    self.assertEqual([3], d.distribution.batch_shape)
    self.assertEqual([], d.event_shape)

    df = tfd.Uniform(4., 5.).sample([10, 1], seed=test_util.test_seed())
    d = tfd.BatchBroadcast(tfd.WishartTriL(df=df, scale_tril=tf.eye(3)), [2])
    self.assertEqual([10, 2], d.batch_shape)
    self.assertEqual([10, 1], d.distribution.batch_shape)
    self.assertEqual([3, 3], d.event_shape)
    def testUniformUniformKLInfinite(self):

        # This covers three cases:
        # - a.low < b.low,
        # - a.high > b.high, and
        # - both.
        a_low = np.array([-1.0, 0.0, -1.0])
        a_high = np.array([1.0, 2.0, 2.0])
        b_low = np.array([0.0] * 3)
        b_high = np.array([1.0] * 3)
        a = tfd.Uniform(low=a_low, high=a_high, validate_args=True)
        b = tfd.Uniform(low=b_low, high=b_high, validate_args=True)

        # Since 'a' can be sampled to give points outside the support of 'b',
        # the KL Divergence is infinite.
        true_kl = tf.convert_to_tensor(value=np.array([np.inf] * 3))

        kl = tfd.kl_divergence(a, b)

        true_kl_, kl_ = self.evaluate([true_kl, kl])
        self.assertAllEqual(true_kl_, kl_)
Ejemplo n.º 20
0
 def test_default_event_space_bijector_shape(self):
     dist = tfd.Uniform(low=[1., 2., 3., 6.], high=10., validate_args=True)
     batch_shape = [2, 2, 1]
     reshape_dist = tfd.BatchReshape(dist,
                                     batch_shape=batch_shape,
                                     validate_args=True)
     x = self.evaluate(dist._experimental_default_event_space_bijector()(
         10. * tf.ones(dist.batch_shape)))
     x_reshape = self.evaluate(
         reshape_dist._experimental_default_event_space_bijector()(
             10. * tf.ones(reshape_dist.batch_shape)))
     self.assertAllEqual(tf.reshape(x, batch_shape), x_reshape)
Ejemplo n.º 21
0
    def testDeferredBijectorParameters(self):
        low = tf.Variable(2.)
        high = tf.Variable(7.)
        dist = tfd.Uniform(low, high, validate_args=True)

        shift = dist._experimental_default_event_space_bijector(
        ).bijectors[0].shift
        scale = dist._experimental_default_event_space_bijector(
        ).bijectors[1].scale
        self.evaluate([low.initializer, high.initializer])
        self.assertIsNone(tf.get_static_value(shift))
        self.assertIsNone(tf.get_static_value(scale))
        self.assertEqual(self.evaluate(tf.convert_to_tensor(scale)), 5.)
        self.assertEqual(self.evaluate(tf.convert_to_tensor(shift)), 2.)
Ejemplo n.º 22
0
    def testUniformFloat64(self):
        uniform = tfd.Uniform(low=np.float64(0.), high=np.float64(1.))

        self.assertAllClose(
            [1., 1.],
            self.evaluate(uniform.prob(np.array([0.5, 0.6],
                                                dtype=np.float64))))

        self.assertAllClose(
            [0.5, 0.6],
            self.evaluate(uniform.cdf(np.array([0.5, 0.6], dtype=np.float64))))

        self.assertAllClose(0.5, self.evaluate(uniform.mean()))
        self.assertAllClose(1 / 12., self.evaluate(uniform.variance()))
        self.assertAllClose(0., self.evaluate(uniform.entropy()))
Ejemplo n.º 23
0
 def one_term(event_shape, event_shape_tensor, batch_shape,
              batch_shape_tensor, dtype):
     if not tensorshape_util.is_fully_defined(event_shape):
         event_shape = event_shape_tensor
     result = tfd.Sample(tfd.Uniform(low=tf.constant(-2., dtype=dtype),
                                     high=tf.constant(2., dtype=dtype)),
                         sample_shape=event_shape)
     if not tensorshape_util.is_fully_defined(batch_shape):
         batch_shape = batch_shape_tensor
         needs_bcast = True
     else:  # Only batch broadcast when batch ndims > 0.
         needs_bcast = bool(tensorshape_util.as_list(batch_shape))
     if needs_bcast:
         result = tfd.BatchBroadcast(result, batch_shape)
     return result
    def testUniformNans(self):
        a = 10.0
        b = [11.0, 100.0]
        uniform = tfd.Uniform(low=a, high=b, validate_args=False)

        no_nans = tf.constant(1.0)
        nans = tf.constant(0.0) / tf.constant(0.0)
        self.assertTrue(self.evaluate(tf.math.is_nan(nans)))
        with_nans = tf.stack([no_nans, nans])

        pdf = uniform.prob(with_nans)

        is_nan = self.evaluate(tf.math.is_nan(pdf))
        self.assertFalse(is_nan[0])
        self.assertTrue(is_nan[1])
Ejemplo n.º 25
0
    def _make_dataset(self,
                      n,
                      d,
                      link,
                      scale=1.,
                      batch_shape=None,
                      dtype=np.float32,
                      seed=42):
        seed = tfd.SeedStream(seed=seed, salt='tfp.glm.proximal_hessian_test')

        if batch_shape is None:
            batch_shape = []

        model_coefficients = tfd.Uniform(low=np.array(-1, dtype),
                                         high=np.array(1, dtype)).sample(
                                             batch_shape + [d], seed=seed())

        radius = np.sqrt(2.)
        model_coefficients *= (radius / tf.linalg.norm(
            tensor=model_coefficients, axis=-1)[..., tf.newaxis])

        mask = tfd.Bernoulli(probs=0.5,
                             dtype=tf.bool).sample(batch_shape + [d])
        model_coefficients = tf1.where(mask, model_coefficients,
                                       tf.zeros_like(model_coefficients))
        model_matrix = tfd.Normal(loc=np.array(0, dtype),
                                  scale=np.array(1, dtype)).sample(
                                      batch_shape + [n, d], seed=seed())
        scale = tf.convert_to_tensor(value=scale, dtype=dtype)
        linear_response = tf.matmul(model_matrix,
                                    model_coefficients[..., tf.newaxis])[...,
                                                                         0]

        if link == 'linear':
            response = tfd.Normal(loc=linear_response,
                                  scale=scale).sample(seed=seed())
        elif link == 'probit':
            response = tf.cast(
                tfd.Normal(loc=linear_response,
                           scale=scale).sample(seed=seed()) > 0, dtype)
        elif link == 'logit':
            response = tfd.Bernoulli(logits=linear_response).sample(
                seed=seed())
        else:
            raise ValueError('unrecognized true link: {}'.format(link))
        return self.evaluate(
            [model_matrix, response, model_coefficients, mask])
    def testUniformSampleWithShape(self):
        a = 10.0
        b = [11.0, 20.0]
        uniform = tfd.Uniform(a, b, validate_args=True)

        pdf = uniform.prob(uniform.sample((2, 3), seed=test_util.test_seed()))
        # pylint: disable=bad-continuation
        expected_pdf = [
            [[1.0, 0.1], [1.0, 0.1], [1.0, 0.1]],
            [[1.0, 0.1], [1.0, 0.1], [1.0, 0.1]],
        ]
        # pylint: enable=bad-continuation
        self.assertAllClose(expected_pdf, self.evaluate(pdf))

        pdf = uniform.prob(uniform.sample(seed=test_util.test_seed()))
        expected_pdf = [1.0, 0.1]
        self.assertAllClose(expected_pdf, self.evaluate(pdf))
Ejemplo n.º 27
0
  def test_bijector_shapes(self):
    d = tfd.Sample(tfd.Uniform(tf.zeros([5]), 1.), 2)
    b = d.experimental_default_event_space_bijector()
    self.assertEqual((2,), d.event_shape)
    self.assertEqual((2,), b.inverse_event_shape((2,)))
    self.assertEqual((2,), b.forward_event_shape((2,)))
    self.assertEqual((5, 2), b.forward_event_shape((5, 2)))
    self.assertEqual((5, 2), b.inverse_event_shape((5, 2)))
    self.assertEqual((3, 5, 2), b.inverse_event_shape((3, 5, 2)))
    self.assertEqual((3, 5, 2), b.forward_event_shape((3, 5, 2)))

    d = tfd.Sample(tfd.CholeskyLKJ(4, concentration=tf.ones([5])), 2)
    b = d.experimental_default_event_space_bijector()
    self.assertEqual((2, 4, 4), d.event_shape)
    dim = (4 * 3) // 2
    self.assertEqual((5, 2, dim), b.inverse_event_shape((5, 2, 4, 4)))
    self.assertEqual((5, 2, 4, 4), b.forward_event_shape((5, 2, dim)))
    self.assertEqual((3, 5, 2, dim), b.inverse_event_shape((3, 5, 2, 4, 4)))
    self.assertEqual((3, 5, 2, 4, 4), b.forward_event_shape((3, 5, 2, dim)))
Ejemplo n.º 28
0
  def testUniformSample(self):
    a = tf.constant([3.0, 4.0])
    b = tf.constant(13.0)
    a1_v = 3.0
    a2_v = 4.0
    b_v = 13.0
    n = tf.constant(100000)
    uniform = tfd.Uniform(low=a, high=b, validate_args=True)

    samples = uniform.sample(n, seed=test_util.test_seed())
    sample_values = self.evaluate(samples)
    self.assertEqual(sample_values.shape, (100000, 2))
    self.assertAllClose(
        sample_values[::, 0].mean(), (b_v + a1_v) / 2, atol=1e-1, rtol=0.)
    self.assertAllClose(
        sample_values[::, 1].mean(), (b_v + a2_v) / 2, atol=1e-1, rtol=0.)
    self.assertFalse(
        np.any(sample_values[::, 0] < a1_v) or np.any(sample_values >= b_v))
    self.assertFalse(
        np.any(sample_values[::, 1] < a2_v) or np.any(sample_values >= b_v))
    def testUniformCDF(self):
        batch_size = 6
        a = tf.constant([1.0] * batch_size)
        b = tf.constant([11.0] * batch_size)
        a_v = 1.0
        b_v = 11.0
        x = np.array([-2.5, 2.5, 4.0, 0.0, 10.99, 12.0], dtype=np.float32)

        uniform = tfd.Uniform(low=a, high=b, validate_args=False)

        def _expected_cdf():
            cdf = (x - a_v) / (b_v - a_v)
            cdf[x >= b_v] = 1
            cdf[x < a_v] = 0
            return cdf

        cdf = uniform.cdf(x)
        self.assertAllClose(_expected_cdf(), self.evaluate(cdf))

        log_cdf = uniform.log_cdf(x)
        self.assertAllClose(np.log(_expected_cdf()), self.evaluate(log_cdf))
Ejemplo n.º 30
0
    def test_default_event_space_bijector_bijective_and_finite(self):
        batch_shape = [5, 1, 4]
        batch_size = np.prod(batch_shape)
        low = tf.Variable(
            np.linspace(-5., 5., batch_size).astype(self.dtype),
            shape=(batch_size, ) if self.is_static_shape else None)
        dist = tfd.Uniform(low=low, high=30., validate_args=True)
        reshape_dist = tfd.BatchReshape(dist,
                                        batch_shape=batch_shape,
                                        validate_args=True)
        x = np.linspace(-10., 10.,
                        batch_size).astype(self.dtype).reshape(batch_shape)
        y = np.linspace(5., 30 - 1e-4,
                        batch_size).astype(self.dtype).reshape(batch_shape)

        self.evaluate(low.initializer)
        bijector_test_util.assert_bijective_and_finite(
            reshape_dist._experimental_default_event_space_bijector(),
            x,
            y,
            eval_func=self.evaluate,
            event_ndims=0,
            rtol=1e-4)