def _variance(self):
     if distribution_util.is_diagonal_scale(self.scale):
         return tf.square(self.scale.diag_part())
     elif (isinstance(self.scale, tf.linalg.LinearOperatorLowRankUpdate)
           and self.scale.is_self_adjoint):
         return tf.linalg.diag_part(self.scale.matmul(
             self.scale.to_dense()))
     else:
         return tf.linalg.diag_part(
             self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))
Ejemplo n.º 2
0
 def _covariance(self):
     # Let
     #   W = (w1,...,wk), with wj ~ iid Exponential(0, 1).
     # Then this distribution is
     #   X = loc + LW,
     # and then since Cov(wi, wj) = 1 if i=j, and 0 otherwise,
     #   Cov(X) = L Cov(W W^T) L^T = L L^T.
     if distribution_util.is_diagonal_scale(self.scale):
         return tf.linalg.diag(tf.square(self.scale.diag_part()))
     else:
         return self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)
 def _covariance(self):
     # Let
     #   W = (w1,...,wk), with wj ~ iid Laplace(0, 1).
     # Then this distribution is
     #   X = loc + LW,
     # and since E[X] = loc,
     #   Cov(X) = E[LW W^T L^T] = L E[W W^T] L^T.
     # Since E[wi wj] = 0 if i != j, and 2 if i == j, we have
     #   Cov(X) = 2 LL^T
     if distribution_util.is_diagonal_scale(self.scale):
         return 2. * tf.linalg.diag(tf.square(self.scale.diag_part()))
     else:
         return 2. * self.scale.matmul(self.scale.to_dense(),
                                       adjoint_arg=True)
 def _covariance(self):
     if distribution_util.is_diagonal_scale(self.scale):
         return tf.linalg.diag(tf.square(self.scale.diag_part()))
     else:
         return self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)