Ejemplo n.º 1
0
 def __init__(self,
              reduction=tf.losses.Reduction.AUTO,
              name=None,
              lambda_weight=None):
     super(PairwiseLogisticLoss, self).__init__(reduction, name)
     self._loss = losses_impl.PairwiseLogisticLoss(
         name='{}_impl'.format(name), lambda_weight=lambda_weight)
Ejemplo n.º 2
0
def _pairwise_logistic_loss(
    labels,
    logits,
    weights=None,
    lambda_weight=None,
    reduction=tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS,
    name=None):
  """Computes the pairwise logistic loss for a list.

  The preference probability of each pair is computed as the sigmoid function:
  P(l_i > l_j) = 1 / (1 + exp(s_j - s_i)) and the logistic loss is log(P(l_i >
  l_j)) if l_i > l_j and 0 otherwise.

  Args:
    labels: A `Tensor` of the same shape as `logits` representing graded
      relevance.
    logits: A `Tensor` with shape [batch_size, list_size]. Each value is the
      ranking score of the corresponding item.
    weights: A scalar, a `Tensor` with shape [batch_size, 1] for list-wise
      weights, or a `Tensor` with shape [batch_size, list_size] for item-wise
      weights.
    lambda_weight: A `_LambdaWeight` object.
    reduction: One of `tf.losses.Reduction` except `NONE`. Describes how to
      reduce training loss over batch.
    name: A string used as the name for this loss.

  Returns:
    An op for the pairwise logistic loss.
  """
  loss = losses_impl.PairwiseLogisticLoss(name, lambda_weight)
  with tf.compat.v1.name_scope(loss.name, 'pairwise_logistic_loss',
                               (labels, logits, weights)):
    return loss.compute(labels, logits, weights, reduction)
Ejemplo n.º 3
0
    def __init__(self,
                 reduction=tf.losses.Reduction.AUTO,
                 name=None,
                 lambda_weight=None,
                 temperature=1.0,
                 ragged=False):
        """Pairwise logistic loss.

    Args:
      reduction: (Optional) The `tf.keras.losses.Reduction` to use (see
        `tf.keras.losses.Loss`).
      name: (Optional) The name for the op.
      lambda_weight: (Optional) A lambdaweight to apply to the loss. Can be one
        of `tfr.keras.losses.DCGLambdaWeight`,
        `tfr.keras.losses.NDCGLambdaWeight`, or,
        `tfr.keras.losses.PrecisionLambdaWeight`.
      temperature: (Optional) The temperature to use for scaling the logits.
      ragged: (Optional) If True, this loss will accept ragged tensors. If
        False, this loss will accept dense tensors.
    """
        super().__init__(reduction, name, lambda_weight, temperature, ragged)
        self._loss = losses_impl.PairwiseLogisticLoss(
            name='{}_impl'.format(name) if name else None,
            lambda_weight=lambda_weight,
            temperature=temperature,
            ragged=ragged)
Ejemplo n.º 4
0
    def test_pairwise_logistic_loss_with_invalid_labels(self):
        with tf.Graph().as_default():
            scores = [[1., 3., 2.]]
            labels = [[0., -1., 1.]]
            reduction = tf.compat.v1.losses.Reduction.SUM_BY_NONZERO_WEIGHTS

            with self.cached_session():
                loss_fn = losses_impl.PairwiseLogisticLoss(name=None)
                self.assertAlmostEqual(loss_fn.compute(labels, scores, None,
                                                       reduction).eval(),
                                       math.log(1 + math.exp(-1.)),
                                       places=5)
Ejemplo n.º 5
0
def make_loss_metric_fn(loss_key,
                        weights_feature_name=None,
                        lambda_weight=None,
                        name=None):
  """Factory method to create a metric based on a loss.

  Args:
    loss_key: A key in `RankingLossKey`.
    weights_feature_name: A `string` specifying the name of the weights feature
      in `features` dict.
    lambda_weight: A `_LambdaWeight` object.
    name: A `string` used as the name for this metric.

  Returns:
    A metric fn with the following Args:
    * `labels`: A `Tensor` of the same shape as `predictions` representing
    graded relevance.
    * `predictions`: A `Tensor` with shape [batch_size, list_size]. Each value
    is the ranking score of the corresponding example.
    * `features`: A dict of `Tensor`s that contains all features.
  """

  metric_dict = {
      RankingLossKey.PAIRWISE_HINGE_LOSS:
          losses_impl.PairwiseHingeLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.PAIRWISE_LOGISTIC_LOSS:
          losses_impl.PairwiseLogisticLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.PAIRWISE_SOFT_ZERO_ONE_LOSS:
          losses_impl.PairwiseSoftZeroOneLoss(
              name, lambda_weight=lambda_weight),
      RankingLossKey.SOFTMAX_LOSS:
          losses_impl.SoftmaxLoss(name, lambda_weight=lambda_weight),
      RankingLossKey.SIGMOID_CROSS_ENTROPY_LOSS:
          losses_impl.SigmoidCrossEntropyLoss(name),
      RankingLossKey.MEAN_SQUARED_LOSS:
          losses_impl.MeanSquaredLoss(name),
      RankingLossKey.LIST_MLE_LOSS:
          losses_impl.ListMLELoss(name, lambda_weight=lambda_weight),
      RankingLossKey.APPROX_NDCG_LOSS:
          losses_impl.ApproxNDCGLoss(name),
      RankingLossKey.APPROX_MRR_LOSS:
          losses_impl.ApproxMRRLoss(name),
      RankingLossKey.GUMBEL_APPROX_NDCG_LOSS: losses_impl.ApproxNDCGLoss(name),
  }

  def _get_weights(features):
    """Get weights tensor from features and reshape it to 2-D if necessary."""
    weights = None
    if weights_feature_name:
      weights = tf.convert_to_tensor(value=features[weights_feature_name])
      # Convert weights to a 2-D Tensor.
      weights = utils.reshape_to_2d(weights)
    return weights

  def metric_fn(labels, predictions, features):
    """Defines the metric fn."""
    weights = _get_weights(features)
    loss = metric_dict.get(loss_key, None)
    if loss is None:
      raise ValueError('loss_key {} not supported.'.format(loss_key))
    return loss.eval_metric(labels, predictions, weights)

  return metric_fn