Ejemplo n.º 1
0
def test_projdiag(backend, dtype, chi):
  A = tn.randn((chi, chi), dtype=dtype, backend=backend, seed=10)
  B = tn.randn((chi, chi), dtype=dtype, backend=backend, seed=10)
  result = ct.projdiag(A, B)
  compare_val = tn.linalg.operations.ncon([A, B], [[1, 2], [1, 2]])
  compare = compare_val * tn.eye(chi, dtype=dtype, backend=backend)
  rtol = (A.size + B.size) * np.finfo(dtype).eps
  np.testing.assert_allclose(result.array, compare.array, rtol=rtol)
Ejemplo n.º 2
0
def test_compute_hR_vs_expect(backend, dtype, chi, d):
  _, _, A_R, H = random_hermitian_system(backend, dtype, chi, d)
  I = tn.eye(chi, backend=backend, dtype=dtype)
  hR = ct.compute_hR(A_R, H)
  result = tn.abs(tn.trace(hR))
  compare = ct.twositeexpect([A_R, I, A_R], H)
  rtol = (2*A_R.size + I.size + H.size) * np.finfo(dtype).eps
  np.testing.assert_allclose(result.array, compare.array, rtol=rtol)
Ejemplo n.º 3
0
def test_XopL_noX(backend, dtype, chi, d):
  A = tn.randn((chi, d, chi), dtype=dtype, backend=backend, seed=10)
  X = tn.eye(chi, dtype=dtype, backend=backend)
  result = ct.XopL(A, X)
  compare = tn.linalg.operations.ncon([A, A.conj()],
                                      [[1, 3, -2],
                                       [1, 3, -1]])
  rtol = (2*A.size + X.size) * np.finfo(dtype).eps
  np.testing.assert_allclose(result.array, compare.array, rtol=rtol)
Ejemplo n.º 4
0
def test_polar(backend, dtype, chi):
  A = tn.randn((chi, chi), backend=backend, dtype=dtype, seed=10)
  U = polar.polarU(A)
  UUdag = U @ U.H
  UdagU = U.H @ U
  eye = tn.eye(chi, dtype, backend=backend)
  atol = A.size * np.finfo(dtype).eps
  np.testing.assert_allclose(eye.array, UUdag.array, atol=atol)
  np.testing.assert_allclose(UUdag.array, eye.array, atol=atol)
Ejemplo n.º 5
0
def test_polar_mps(backend, dtype, chi, d):
  A = tn.randn((chi, d, chi), backend=backend, dtype=dtype, seed=10)
  UR = polar.polarU(A, pivot_axis=1)
  UL = polar.polarU(A, pivot_axis=2)
  eye = tn.eye(chi, dtype, backend=backend)
  testR = ct.XopR(UR, eye)
  testL = ct.XopL(UL, eye)
  atol = A.size * np.finfo(dtype).eps
  np.testing.assert_allclose(eye.array, testR.array, atol=atol)
  np.testing.assert_allclose(eye.array, testL.array, atol=atol)
Ejemplo n.º 6
0
def test_inv_vs_backend(backend, dtype):
    shape = 6
    dtype = testing_utils.np_dtype_to_backend(backend, dtype)
    tensor = tensornetwork.eye(shape, backend=backend, dtype=dtype)
    tn_result = linalg.inv(tensor)
    if backend is None:
        backend = backend_contextmanager.get_default_backend()
    backend_obj = backends.backend_factory.get_backend(backend)
    backend_result = backend_obj.inv(tensor.array)
    np.testing.assert_allclose(tn_result.array, backend_result)
Ejemplo n.º 7
0
def test_eye(backend):
    """
  Tests tensornetwork.eye against np.eye.
  """
    N = 4
    M = 6
    backend_obj = backends.backend_factory.get_backend(backend)
    for dtype in dtypes[backend]["all"]:
        tnI = tensornetwork.eye(N, dtype=dtype, M=M, backend=backend)
        npI = backend_obj.eye(N, dtype=dtype, M=M)
        np.testing.assert_allclose(tnI.array, npI)
Ejemplo n.º 8
0
def test_gauge_match_right(backend, dtype, chi, d):
    """
  Gauge matching is a null op on a system gauge matched on the RHS.
  """
    _, C, A_R, _ = random_hermitian_system(backend, dtype, chi, d)
    A_C = ct.leftmult(C, A_R)
    _, A_R2 = vumps.gauge_match(A_C, C, True)
    rtol = 2 * A_R.size * C.size * A_C.size * np.finfo(dtype).eps
    np.testing.assert_allclose(A_R.array, A_R2.array, rtol=rtol)
    I = tn.eye(chi, backend=backend, dtype=dtype)
    XAR2 = ct.XopR(A_R2, I)
    np.testing.assert_allclose(XAR2.array, I.array, atol=rtol)
Ejemplo n.º 9
0
def test_gauge_match_left(backend, dtype, chi, d):
    """
  Gauge matching is a null op on a system gauge matched on the LHS.
  """
    A_L, C, _, _ = random_hermitian_system(backend, dtype, chi, d)
    A_C = ct.rightmult(A_L, C)
    A_L2, _ = vumps.gauge_match(A_C, C, True)
    rtol = 2 * A_L.size * C.size * A_C.size * np.finfo(dtype).eps
    np.testing.assert_allclose(A_L.array, A_L2.array, rtol=rtol)
    I = tn.eye(chi, backend=backend, dtype=dtype)
    XAL2 = ct.XopL(A_L2, I)
    np.testing.assert_allclose(XAL2.array, I.array, atol=rtol)
Ejemplo n.º 10
0
def test_expm_vs_backend(backend, dtype):
  shape = 6
  dtype = testing_utils.np_dtype_to_backend(backend, dtype)
  tensor = tensornetwork.eye(shape, backend=backend, dtype=dtype)
  if backend in ["pytorch"]:
    with pytest.raises(NotImplementedError):
      tn_result = linalg.expm(tensor)
  else:
    tn_result = linalg.expm(tensor)
  backend_obj = backends.backend_factory.get_backend(backend)
  if backend in ["pytorch"]:
    with pytest.raises(NotImplementedError):
      backend_result = backend_obj.expm(tensor.array)
  else:
    backend_result = backend_obj.expm(tensor.array)
    np.testing.assert_allclose(tn_result.array, backend_result)
Ejemplo n.º 11
0
def H_ising(h: float,
            J: float = 1.,
            backend: Optional[BackendType] = None,
            dtype: Optional[DtypeType] = None) -> tn.Tensor:
    """
  The famous and beloved transverse-field Ising model,
  H = J * XX + h * ZI

  Args:
    h  : Transverse field.
    J  : Coupling strength, default 1.
    backend: The backend.
    dtype  : dtype of data.
  Returns:
    H      : The Hamiltonian, a tn.Tensor shape (2, 2, 2, 2).
  """
    X = sigX(backend=backend, dtype=dtype)
    Z = sigZ(backend=backend, dtype=dtype)
    Id = tn.eye(2, backend=backend, dtype=dtype)
    return J * tn.kron(X, X) + 0.5 * h * (tn.kron(Z, Id) + tn.kron(Id, Z))