def test_script_mode(user_script, training_fn, capture_error):
    channel = test.Channel.create(name="training")

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, "training_data"),
             features=features,
             labels=labels)

    module = test.UserModule(test.File(name="user_script.py",
                                       data=user_script))

    hyperparameters = dict(
        training_data_file=os.path.join(channel.path, "training_data.npz"),
        sagemaker_program="user_script.py",
        epochs=10,
        batch_size=64,
        model_dir=env.model_dir,
    )

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    assert execute_an_wrap_exit(
        training_fn, capture_error=capture_error) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, "saved_model")

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.loss == "elastic"
    assert model.optimizer == "SGD"
def test_script_mode_client_import_error(training_fn, capture_error):
    channel = test.Channel.create(name="training")

    requirements_file = test.File("requirements.txt", "invalid/module")

    user_script = test.File(name="user_script", data="invalid/module")
    module = test.UserModule(user_script).add_file(setup_file).add_file(
        requirements_file).upload()

    hyperparameters = dict(sagemaker_program="user_script")

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    with pytest.raises(errors.InstallModuleError) as e:
        training_fn(capture_error)

    message = str(e.value)
    assert "InstallModuleError:" in message

    # fmt: off
    if capture_error:
        assert "Invalid requirement" in message
        assert "It looks like a path" in message
Ejemplo n.º 3
0
def test_training_framework(user_script):
    with pytest.raises(ImportError):
        importlib.import_module(modules.DEFAULT_MODULE_NAME)

    channel = test.Channel.create(name='training')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, 'training_data'),
             features=features,
             labels=labels)

    module = test.UserModule(test.File(name='user_script.py',
                                       data=user_script))

    hyperparameters = dict(training_data_file='training_data.npz',
                           sagemaker_program='user_script.py',
                           epochs=10,
                           batch_size=64,
                           optimizer='Adam')

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    assert execute_an_wrap_exit(framework_training_fn) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, 'saved_model')
    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.optimizer == 'Adam'
def test_trainer_report_success(user_script, sagemaker_program):
    channel = test.Channel.create(name="training")

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, "training_data"),
             features=features,
             labels=labels)

    module = test.UserModule(
        test.File(name=sagemaker_program, data=user_script))

    hyperparameters = dict(
        training_data_file="training_data.npz",
        sagemaker_program=sagemaker_program,
        epochs=10,
        batch_size=64,
    )

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    assert execute_an_wrap_exit(trainer.train) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, "saved_model")

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.optimizer == "SGD"
    assert os.path.exists(os.path.join(env.output_dir, "success"))
Ejemplo n.º 5
0
def test_script_mode_local_directory(user_script, training_fn, capture_error, tmpdir):
    channel = test.Channel.create(name='training')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, 'training_data'), features=features, labels=labels)

    tmp_code_dir = str(tmpdir)

    module = test.UserModule(test.File(name='user_script.py', data=user_script))
    module.create_tmp_dir_with_files(tmp_code_dir)

    hyperparameters = dict(training_data_file=os.path.join(channel.path, 'training_data.npz'),
                           sagemaker_program='user_script.py', sagemaker_submit_directory=tmp_code_dir,
                           epochs=10, batch_size=64, model_dir=env.model_dir)

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel], local=True)

    assert execute_an_wrap_exit(training_fn, capture_error=capture_error) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, 'saved_model')

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.loss == 'elastic'
    assert model.optimizer == 'SGD'
Ejemplo n.º 6
0
def test_training_framework_network_isolation(user_script, capture_error):
    with pytest.raises(ImportError):
        importlib.import_module(modules.DEFAULT_MODULE_NAME)

    channel_train = test.Channel.create(name='training')
    channel_code = test.Channel.create(name='code')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel_train.path, 'training_data'), features=features, labels=labels)

    with open(os.path.join(channel_code.path, 'user_script.py'), 'w') as f:
        f.write(user_script)
        f.close()

    module = test.UserModule(test.File(name='user_script.py', data=""))  # dummy module for hyperparameters

    submit_dir = env.input_dir + '/data/code'
    hyperparameters = dict(training_data_file='training_data.npz', sagemaker_program='user_script.py',
                           sagemaker_submit_directory=submit_dir, epochs=10, batch_size=64, optimizer='Adam')

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel_train, channel_code],
                 local=True)

    assert execute_an_wrap_exit(framework_training_fn) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, 'saved_model')
    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.optimizer == 'Adam'
def test_trainer_report_failure():
    channel = test.Channel.create(name="training")

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, "training_data"), features=features, labels=labels)

    module = test.UserModule(
        test.File(name="user_script.py", data=USER_SCRIPT_WITH_EXCEPTION)
    ).add_file(setup_file)

    hyperparameters = dict(
        training_data_file="training_data.npz",
        sagemaker_program="user_script.py",
        epochs=10,
        batch_size=64,
    )

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel])

    os.environ["SAGEMAKER_TRAINING_MODULE"] = "test.functional.simple_framework:train"

    assert execute_an_wrap_exit(trainer.train) == errno.ENOENT

    failure_file = os.path.join(environment.output_dir, "failure")
    assert os.path.exists(failure_file)

    message = failure_message()

    assert message.startswith("Framework Error:")
    assert "No such file or directory" in message
def test_training_framework(user_script, capture_error):
    with pytest.raises(ImportError):
        importlib.import_module(modules.DEFAULT_MODULE_NAME)

    channel = test.Channel.create(name="training")

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, "training_data"), features=features, labels=labels)

    file = test.File(name="user_script.py", data=user_script)
    module = test.UserModule(file).add_file(setup_file)

    hyperparameters = dict(
        training_data_file="training_data.npz",
        sagemaker_program="user_script.py",
        epochs=10,
        batch_size=64,
        optimizer="Adam",
    )

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel])

    assert execute_an_wrap_exit(framework_training_fn) == trainer.SUCCESS_CODE

    model_path = os.path.join(environment.model_dir, "saved_model")
    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.optimizer == "Adam"
Ejemplo n.º 9
0
def test_trainer_report_failure():
    channel = test.Channel.create(name='training')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, 'training_data'),
             features=features,
             labels=labels)

    module = test.UserModule(
        test.File(name='user_script.py', data=USER_SCRIPT_WITH_EXCEPTION))

    hyperparameters = dict(training_data_file='training_data.npz',
                           sagemaker_program='user_script.py',
                           epochs=10,
                           batch_size=64)

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    os.environ[
        'SAGEMAKER_TRAINING_MODULE'] = 'test.functional.simple_framework:train'

    assert execute_an_wrap_exit(trainer.train) == errno.ENOENT

    failure_file = os.path.join(env.output_dir, 'failure')
    assert os.path.exists(failure_file)

    message = failure_message()

    assert message.startswith('framework error:')
    assert 'No such file or directory' in message
Ejemplo n.º 10
0
def test_script_mode(user_script):
    channel = test.Channel.create(name='training')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, 'training_data'),
             features=features,
             labels=labels)

    module = test.UserModule(test.File(name='user_script.py',
                                       data=user_script))

    hyperparameters = dict(training_data_file=os.path.join(
        channel.path, 'training_data.npz'),
                           sagemaker_program='user_script.py',
                           epochs=10,
                           batch_size=64,
                           model_dir=env.model_dir)

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    assert execute_an_wrap_exit(
        framework_training_with_script_mode_fn) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, 'saved_model')

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.loss == 'elastic'
    assert model.optimizer == 'SGD'
Ejemplo n.º 11
0
def test_parameter_server():
    module = test.UserModule(test.File(name='user_script.py', data=PARAMETER_SERVER_SCRIPT))
    hyperparameters = dict(sagemaker_program='user_script.py')

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[test.Channel.create(name='training')])
    training_env = sagemaker_containers.training_env()
    process = entry_point.run(training_env.module_dir, training_env.user_entry_point,
                              training_env.to_cmd_args(), training_env.to_env_vars(), wait=False)
    # confirm the ps process is still hanging
    assert process.poll() is None
    process.kill()
def test_script_mode_client_error():
    channel = test.Channel.create(name="training")

    module = test.UserModule(test.File(name="user_script.py", data=USER_MODE_SCRIPT_WITH_ERROR))

    hyperparameters = dict(sagemaker_program="user_script.py")

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel])

    with pytest.raises(errors.ExecuteUserScriptError) as e:
        framework_training_with_script_mode_fn(capture_error=True)

    message = str(e.value)
    assert "ExecuteUserScriptError" in message
    assert "ZeroDivisionError" in message
Ejemplo n.º 13
0
def test_script_mode_client_error(training_fn, capture_error):
    channel = test.Channel.create(name='training')

    module = test.UserModule(test.File(name='user_script.py', data=USER_MODE_SCRIPT_WITH_ERROR))

    hyperparameters = dict(sagemaker_program='user_script.py')

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel])

    with pytest.raises(errors.ExecuteUserScriptError) as e:
        training_fn(capture_error)

    message = str(e.value)
    assert 'ExecuteUserScriptError' in message
    if capture_error:
        assert 'ZeroDivisionError' in message
Ejemplo n.º 14
0
def test_script_mode_client_import_error():
    channel = test.Channel.create(name='training')

    requirements_file = test.File('requirements.txt', '42/0')

    user_script = test.File(name='user_script.py', data='42/0')
    module = test.UserModule(user_script).add_file(requirements_file).upload()

    hyperparameters = dict(sagemaker_program='user_script.py')

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    with pytest.raises(errors.InstallModuleError) as e:
        framework_training_with_script_mode_fn()

    message = str(e.value)
    assert 'InstallModuleError:' in message
Ejemplo n.º 15
0
def test_script_mode_client_import_error(training_fn, capture_error):
    channel = test.Channel.create(name='training')

    requirements_file = test.File('requirements.txt', '42/0')

    user_script = test.File(name='user_script', data='42/0')
    module = test.UserModule(user_script).add_file(setup_file).add_file(requirements_file).upload()

    hyperparameters = dict(sagemaker_program='user_script')

    test.prepare(user_module=module, hyperparameters=hyperparameters, channels=[channel])

    with pytest.raises(errors.InstallModuleError) as e:
        training_fn(capture_error)

    message = str(e.value)
    assert 'InstallModuleError:' in message

    if capture_error:
        assert "Invalid requirement: \'42/0\'" in message
        assert "It looks like a path. File \'42/0\' does not exist." in message
Ejemplo n.º 16
0
def test_script_mode_local_directory(tmpdir):
    channel = test.Channel.create(name="training")

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, "training_data"),
             features=features,
             labels=labels)

    tmp_code_dir = str(tmpdir)

    module = test.UserModule(
        test.File(name="user_script.py", data=USER_MODE_SCRIPT))
    module.create_tmp_dir_with_files(tmp_code_dir)

    hyperparameters = dict(
        training_data_file=os.path.join(channel.path, "training_data.npz"),
        sagemaker_program="user_script.py",
        sagemaker_submit_directory=tmp_code_dir,
        epochs=10,
        batch_size=64,
        model_dir=environment.model_dir,
    )

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel],
                 local=True)

    assert (execute_an_wrap_exit(framework_training_with_script_mode_fn,
                                 capture_error=False) == trainer.SUCCESS_CODE)

    model_path = os.path.join(environment.model_dir, "saved_model")

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.loss == "elastic"
    assert model.optimizer == "SGD"
Ejemplo n.º 17
0
def test_trainer_report_success(user_script):
    with pytest.raises(ImportError):
        importlib.import_module(modules.DEFAULT_MODULE_NAME)

    channel = test.Channel.create(name='training')

    features = [1, 2, 3, 4]
    labels = [0, 1, 0, 1]
    np.savez(os.path.join(channel.path, 'training_data'),
             features=features,
             labels=labels)

    module = test.UserModule(test.File(name='user_script.py',
                                       data=user_script))

    hyperparameters = dict(training_data_file='training_data.npz',
                           sagemaker_program='user_script.py',
                           epochs=10,
                           batch_size=64,
                           optimizer='SGD')

    test.prepare(user_module=module,
                 hyperparameters=hyperparameters,
                 channels=[channel])

    os.environ[
        'SAGEMAKER_TRAINING_MODULE'] = 'test.functional.simple_framework:train'

    assert execute_an_wrap_exit(trainer.train) == trainer.SUCCESS_CODE

    model_path = os.path.join(env.model_dir, 'saved_model')

    model = fake_ml_framework.Model.load(model_path)

    assert model.epochs == 10
    assert model.batch_size == 64
    assert model.optimizer == 'SGD'
    assert os.path.exists(os.path.join(env.output_dir, 'success'))
Ejemplo n.º 18
0
test_only = False
test_report = False
test_noclean = False
if "test" in sys.argv: test_only = True
if "report" in sys.argv: test_report = True
if "noclean" in sys.argv: test_noclean = True

if not test_only:
    build_conf("Minimal config monochrome", defines.minimal_monochrome)
    build_conf("Minimal config, 16 bit color depth", defines.minimal_16bit)
    build_conf("Normal config, 16 bit color depth swapped",
               defines.normal_16bit_swap)
    build_conf("Full config, 32 bit color depth", defines.full_32bit)

files = test.prepare()
if test_noclean == False:
    build.clean()

for f in files:
    name = f[:-2]  #test_foo.c -> test_foo
    build.build_test(defines.test, name)

if test_report:
    print("")
    print("Generating report")
    print("-----------------------", flush=True)
    os.system("rm -r report")
    os.system("mkdir report")
    os.system(
        "gcovr -r ../ --html-details -o report/index.html  --exclude-directories '\.\./examples' --exclude-directories 'src/.*' --exclude-directories 'unity' --exclude 'lv_test_.*\.c'"
Ejemplo n.º 19
0
from __future__ import division
import caffe
from caffe import tools
import test
from util import Timer
import numpy as np
import os

save_format, snapshot_prefix = test.prepare()

weights = '/home/jonlong/x/caffe/models/VGG/VGG16_full_conv.caffemodel'

caffe.set_device(6)
solver = caffe.SGDSolver('solver.prototxt')
solver.set_snapshot_prefix(snapshot_prefix)
solver.net.set_phase_train()
solver.net.set_mode_gpu()
solver.net.copy_from(weights)

for _ in range(1000):
    solver.step(200)
    test.seg_tests(solver, save_format, 'pascal')
Ejemplo n.º 20
0
from __future__ import division
import caffe
from caffe import tools
import test
from util import Timer
import numpy as np
import os

save_format, snapshot_prefix = test.prepare()

weights = "/home/jonlong/x/caffe/models/VGG/VGG16_full_conv.caffemodel"

caffe.set_device(6)
solver = caffe.SGDSolver("solver.prototxt")
solver.set_snapshot_prefix(snapshot_prefix)
solver.net.set_phase_train()
solver.net.set_mode_gpu()
solver.net.copy_from(weights)

for _ in range(1000):
    solver.step(200)
    test.seg_tests(solver, save_format, "pascal")