Ejemplo n.º 1
0
    def test_null_locators(self, test_node, inv_node):
        tip = self.nodes[0].getblockheader(self.nodes[0].generatetoaddress(
            1, self.nodes[0].get_deterministic_priv_key().address)[0])
        tip_hash = int(tip["hash"], 16)
        final_tx = get_final_tx_info(self.nodes[0])

        inv_node.check_last_inv_announcement(inv=[tip_hash])
        test_node.check_last_inv_announcement(inv=[tip_hash])

        self.log.info(
            "Verify getheaders with null locator and valid hashstop returns headers."
        )
        test_node.clear_block_announcements()
        test_node.send_get_headers(locator=[], hashstop=tip_hash)
        test_node.check_last_headers_announcement(headers=[tip_hash])

        self.log.info(
            "Verify getheaders with null locator and invalid hashstop does not return headers."
        )
        block = create_block(int(tip["hash"], 16),
                             create_coinbase(tip["height"] + 1),
                             tip["mediantime"] + 1)
        final_tx = add_final_tx(final_tx, block)
        block.solve()
        test_node.send_header_for_blocks([block])
        test_node.clear_block_announcements()
        test_node.send_get_headers(locator=[], hashstop=int(block.hash, 16))
        test_node.sync_with_ping()
        assert_equal(test_node.block_announced, False)
        inv_node.clear_block_announcements()
        test_node.send_message(msg_block(block))
        inv_node.check_last_inv_announcement(inv=[int(block.hash, 16)])
Ejemplo n.º 2
0
def submit_block_with_tx(node, tx):
    ctx = CTransaction()
    ctx.deserialize(io.BytesIO(hex_str_to_bytes(tx)))

    tip = node.getbestblockhash()
    height = node.getblockcount() + 1
    block_time = node.getblockheader(tip)["mediantime"] + 1
    block = create_block(int(tip, 16), create_coinbase(height), block_time)
    block.vtx.append(ctx)
    if height > 100:
        add_final_tx(get_final_tx_info(node), block)
    block.rehash()
    block.hashMerkleRoot = block.calc_merkle_root()
    add_witness_commitment(block)
    block.solve()
    node.submitblock(bytes_to_hex_str(block.serialize(True)))
    return block
Ejemplo n.º 3
0
    def test_bip68_not_consensus(self):
        assert (get_bip9_status(self.nodes[0], 'locktime')['status'] !=
                'active')
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)

        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Make an anyone-can-spend transaction
        tx2 = CTransaction()
        tx2.nVersion = 1
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [
            CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN),
                   CScript([b'a']))
        ]

        # sign tx2
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(ToHex(tx2))

        # Now make an invalid spend of tx2 according to BIP68
        sequence_value = 100  # 100 block relative locktime

        tx3 = CTransaction()
        tx3.nVersion = 2
        tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
        tx3.vout = [
            CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN),
                   CScript([b'a' * 35]))
        ]
        tx3.rehash()

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR,
                                self.nodes[0].sendrawtransaction, ToHex(tx3))

        # make a block that violates bip68; ensure that the tip updates
        tip = int(self.nodes[0].getbestblockhash(), 16)
        final_tx = get_final_tx_info(self.nodes[0])
        block = create_block(
            tip, create_coinbase(self.nodes[0].getblockcount() + 1))
        block.nVersion = 3
        block.vtx.extend([tx1, tx2, tx3])
        final_tx = add_final_tx(final_tx, block)
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        add_witness_commitment(block)
        block.solve()

        self.nodes[0].submitblock(bytes_to_hex_str(block.serialize(True)))
        assert_equal(self.nodes[0].getbestblockhash(), block.hash)
Ejemplo n.º 4
0
    def run_test(self):
        node = self.nodes[0]  # alias

        node.add_p2p_connection(P2PStoreTxInvs())

        self.log.info("Create a new transaction and wait until it's broadcast")
        txid = int(node.sendtoaddress(node.getnewaddress(), 1), 16)

        # Can take a few seconds due to transaction trickling
        wait_until(lambda: node.p2p.tx_invs_received[txid] >= 1,
                   lock=mininode_lock)

        # Add a second peer since txs aren't rebroadcast to the same peer (see filterInventoryKnown)
        node.add_p2p_connection(P2PStoreTxInvs())

        self.log.info("Create a block")
        # Create and submit a block without the transaction.
        # Transactions are only rebroadcast if there has been a block at least five minutes
        # after the last time we tried to broadcast. Use mocktime and give an extra minute to be sure.
        block_time = int(time.time()) + 6 * 60
        node.setmocktime(block_time)
        block = create_block(
            int(node.getbestblockhash(), 16),
            create_coinbase(node.getblockchaininfo()['blocks'] + 1),
            block_time)
        add_final_tx(get_final_tx_info(node), block)
        block.nVersion = 3
        block.rehash()
        block.solve()
        node.submitblock(ToHex(block))

        # Transaction should not be rebroadcast
        node.p2ps[1].sync_with_ping()
        assert_equal(node.p2ps[1].tx_invs_received[txid], 0)

        self.log.info("Transaction should be rebroadcast after 30 minutes")
        # Use mocktime and give an extra 5 minutes to be sure.
        rebroadcast_time = int(time.time()) + 41 * 60
        node.setmocktime(rebroadcast_time)
        wait_until(lambda: node.p2ps[1].tx_invs_received[txid] >= 1,
                   lock=mininode_lock)
Ejemplo n.º 5
0
 def create_test_block(self, txs, version=536870912):
     block = create_block(self.tip, create_coinbase(self.tipheight + 1),
                          self.last_block_time + 600)
     block.nVersion = version
     block.vtx.extend(txs)
     self.next_final_tx = self.final_tx
     if self.tipheight >= 100:
         self.next_final_tx = add_final_tx(self.final_tx, block)
     block.hashMerkleRoot = block.calc_merkle_root()
     block.rehash()
     block.solve()
     return block
Ejemplo n.º 6
0
    def send_blocks_with_version(self, peer, numblocks, version):
        """Send numblocks blocks to peer with version set"""
        tip = self.nodes[0].getbestblockhash()
        height = self.nodes[0].getblockcount()
        block_time = self.nodes[0].getblockheader(tip)["time"] + 1
        tip = int(tip, 16)
        final_tx = False

        for _ in range(numblocks):
            block = create_block(tip, create_coinbase(height + 1), block_time)
            block.nVersion = version
            if height >= 100:
                if not final_tx:
                    final_tx = get_final_tx_info(self.nodes[0])
                final_tx = add_final_tx(final_tx, block)
            block.solve()
            peer.send_message(msg_block(block))
            block_time += 1
            height += 1
            tip = block.sha256
        peer.sync_with_ping()
Ejemplo n.º 7
0
    def run_test(self):
        self.nodes[0].add_p2p_connection(P2PInterface())

        self.log.info("Mining %d blocks", DERSIG_HEIGHT - 2)
        self.coinbase_txids = [
            self.nodes[0].getblock(b)['tx'][0]
            for b in self.nodes[0].generate(DERSIG_HEIGHT - 2)
        ]
        self.nodeaddress = self.nodes[0].getnewaddress()

        self.log.info(
            "Test that a transaction with non-DER signature can still appear in a block"
        )

        final_tx = get_final_tx_info(self.nodes[0])

        spendtx = create_transaction(self.nodes[0],
                                     self.coinbase_txids[0],
                                     self.nodeaddress,
                                     amount=1.0)
        unDERify(spendtx)
        spendtx.rehash()

        tip = self.nodes[0].getbestblockhash()
        block_time = self.nodes[0].getblockheader(tip)['mediantime'] + 1
        block = create_block(int(tip, 16), create_coinbase(DERSIG_HEIGHT - 1),
                             block_time)
        final_tx = add_final_tx(final_tx, block)
        block.nVersion = 2
        block.vtx.insert(-1, spendtx)
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        block.solve()

        self.nodes[0].p2p.send_and_ping(msg_block(block))
        assert_equal(self.nodes[0].getbestblockhash(), block.hash)

        self.log.info("Test that blocks must now be at least version 3")
        tip = block.sha256
        block_time += 1
        block = create_block(tip, create_coinbase(DERSIG_HEIGHT), block_time)
        final_tx = add_final_tx(final_tx, block)
        block.nVersion = 2
        block.rehash()
        block.solve()

        with self.nodes[0].assert_debug_log(expected_msgs=[
                '{}, bad-version(0x00000002)'.format(block.hash)
        ]):
            self.nodes[0].p2p.send_and_ping(msg_block(block))
            assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip)
            self.nodes[0].p2p.sync_with_ping()

        self.log.info(
            "Test that transactions with non-DER signatures cannot appear in a block"
        )
        block.nVersion = 3

        spendtx = create_transaction(self.nodes[0],
                                     self.coinbase_txids[1],
                                     self.nodeaddress,
                                     amount=1.0)
        unDERify(spendtx)
        spendtx.rehash()

        # First we show that this tx is valid except for DERSIG by getting it
        # rejected from the mempool for exactly that reason.
        assert_equal([{
            'txid':
            spendtx.hash,
            'allowed':
            False,
            'reject-reason':
            '64: non-mandatory-script-verify-flag (Non-canonical DER signature)'
        }],
                     self.nodes[0].testmempoolaccept(
                         rawtxs=[bytes_to_hex_str(spendtx.serialize())],
                         allowhighfees=True))

        # Now we verify that a block with this transaction is also invalid.
        block.vtx.insert(-1, spendtx)
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        block.solve()

        with self.nodes[0].assert_debug_log(expected_msgs=[
                'CheckInputs on {} failed with non-mandatory-script-verify-flag (Non-canonical DER signature)'
                .format(block.vtx[-2].hash)
        ]):
            self.nodes[0].p2p.send_and_ping(msg_block(block))
            assert_equal(int(self.nodes[0].getbestblockhash(), 16), tip)
            self.nodes[0].p2p.sync_with_ping()

        wait_until(lambda: "reject" in self.nodes[0].p2p.last_message.keys(),
                   lock=mininode_lock)
        with mininode_lock:
            assert self.nodes[0].p2p.last_message["reject"].code in [
                REJECT_INVALID, REJECT_NONSTANDARD
            ]
            assert_equal(self.nodes[0].p2p.last_message["reject"].data,
                         block.sha256)
            assert b'Non-canonical DER signature' in self.nodes[
                0].p2p.last_message["reject"].reason

        self.log.info(
            "Test that a version 3 block with a DERSIG-compliant transaction is accepted"
        )
        block.vtx[1] = create_transaction(self.nodes[0],
                                          self.coinbase_txids[1],
                                          self.nodeaddress,
                                          amount=1.0)
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        block.solve()

        self.nodes[0].p2p.send_and_ping(msg_block(block))
        assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256)
Ejemplo n.º 8
0
    def test_nonnull_locators(self, test_node, inv_node):
        tip = int(self.nodes[0].getbestblockhash(), 16)

        # PART 1
        # 1. Mine a block; expect inv announcements each time
        self.log.info(
            "Part 1: headers don't start before sendheaders message...")
        for i in range(4):
            self.log.debug("Part 1.{}: starting...".format(i))
            old_tip = tip
            tip = self.mine_blocks(1)
            final_tx = get_final_tx_info(self.nodes[0])
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_inv_announcement(inv=[tip])
            # Try a few different responses; none should affect next announcement
            if i == 0:
                # first request the block
                test_node.send_get_data([tip])
                test_node.wait_for_block(tip)
            elif i == 1:
                # next try requesting header and block
                test_node.send_get_headers(locator=[old_tip], hashstop=tip)
                test_node.send_get_data([tip])
                test_node.wait_for_block(tip)
                test_node.clear_block_announcements(
                )  # since we requested headers...
            elif i == 2:
                # this time announce own block via headers
                inv_node.clear_block_announcements()
                height = self.nodes[0].getblockcount()
                last_time = self.nodes[0].getblock(
                    self.nodes[0].getbestblockhash())['time']
                block_time = last_time + 1
                new_block = create_block(tip, create_coinbase(height + 1),
                                         block_time)
                final_tx = add_final_tx(final_tx, new_block)
                new_block.solve()
                test_node.send_header_for_blocks([new_block])
                test_node.wait_for_getdata([new_block.sha256])
                test_node.send_message(msg_block(new_block))
                test_node.sync_with_ping()  # make sure this block is processed
                wait_until(lambda: inv_node.block_announced,
                           timeout=60,
                           lock=mininode_lock)
                inv_node.clear_block_announcements()
                test_node.clear_block_announcements()

        self.log.info("Part 1: success!")
        self.log.info(
            "Part 2: announce blocks with headers after sendheaders message..."
        )
        # PART 2
        # 2. Send a sendheaders message and test that headers announcements
        # commence and keep working.
        test_node.send_message(msg_sendheaders())
        prev_tip = int(self.nodes[0].getbestblockhash(), 16)
        test_node.send_get_headers(locator=[prev_tip], hashstop=0)
        test_node.sync_with_ping()

        # Now that we've synced headers, headers announcements should work
        tip = self.mine_blocks(1)
        final_tx = get_final_tx_info(self.nodes[0])
        inv_node.check_last_inv_announcement(inv=[tip])
        test_node.check_last_headers_announcement(headers=[tip])

        height = self.nodes[0].getblockcount() + 1
        block_time += 10  # Advance far enough ahead
        for i in range(10):
            self.log.debug("Part 2.{}: starting...".format(i))
            # Mine i blocks, and alternate announcing either via
            # inv (of tip) or via headers. After each, new blocks
            # mined by the node should successfully be announced
            # with block header, even though the blocks are never requested
            for j in range(2):
                self.log.debug("Part 2.{}.{}: starting...".format(i, j))
                blocks = []
                for b in range(i + 1):
                    block = create_block(tip, create_coinbase(height),
                                         block_time)
                    final_tx = add_final_tx(final_tx, block)
                    blocks.append(block)
                    blocks[-1].solve()
                    tip = blocks[-1].sha256
                    block_time += 1
                    height += 1
                if j == 0:
                    # Announce via inv
                    test_node.send_block_inv(tip)
                    test_node.wait_for_getheaders()
                    # Should have received a getheaders now
                    test_node.send_header_for_blocks(blocks)
                    # Test that duplicate inv's won't result in duplicate
                    # getdata requests, or duplicate headers announcements
                    [inv_node.send_block_inv(x.sha256) for x in blocks]
                    test_node.wait_for_getdata([x.sha256 for x in blocks])
                    inv_node.sync_with_ping()
                else:
                    # Announce via headers
                    test_node.send_header_for_blocks(blocks)
                    test_node.wait_for_getdata([x.sha256 for x in blocks])
                    # Test that duplicate headers won't result in duplicate
                    # getdata requests (the check is further down)
                    inv_node.send_header_for_blocks(blocks)
                    inv_node.sync_with_ping()
                [test_node.send_message(msg_block(x)) for x in blocks]
                test_node.sync_with_ping()
                inv_node.sync_with_ping()
                # This block should not be announced to the inv node (since it also
                # broadcast it)
                assert "inv" not in inv_node.last_message
                assert "headers" not in inv_node.last_message
                tip = self.mine_blocks(1)
                final_tx = get_final_tx_info(self.nodes[0])
                inv_node.check_last_inv_announcement(inv=[tip])
                test_node.check_last_headers_announcement(headers=[tip])
                height += 1
                block_time += 1

        self.log.info("Part 2: success!")

        self.log.info(
            "Part 3: headers announcements can stop after large reorg, and resume after headers/inv from peer..."
        )

        # PART 3.  Headers announcements can stop after large reorg, and resume after
        # getheaders or inv from peer.
        for j in range(2):
            self.log.debug("Part 3.{}: starting...".format(j))
            # First try mining a reorg that can propagate with header announcement
            new_block_hashes = self.mine_reorg(length=7)
            tip = new_block_hashes[-1]
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_headers_announcement(headers=new_block_hashes)

            block_time += 8

            # Mine a too-large reorg, which should be announced with a single inv
            new_block_hashes = self.mine_reorg(length=8)
            tip = new_block_hashes[-1]
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_inv_announcement(inv=[tip])

            block_time += 9

            fork_point = self.nodes[0].getblock(
                "%064x" % new_block_hashes[0])["previousblockhash"]
            fork_point = int(fork_point, 16)

            # Use getblocks/getdata
            test_node.send_getblocks(locator=[fork_point])
            test_node.check_last_inv_announcement(inv=new_block_hashes)
            test_node.send_get_data(new_block_hashes)
            test_node.wait_for_block(new_block_hashes[-1])

            for i in range(3):
                self.log.debug("Part 3.{}.{}: starting...".format(j, i))

                # Mine another block, still should get only an inv
                tip = self.mine_blocks(1)
                inv_node.check_last_inv_announcement(inv=[tip])
                test_node.check_last_inv_announcement(inv=[tip])
                if i == 0:
                    # Just get the data -- shouldn't cause headers announcements to resume
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                elif i == 1:
                    # Send a getheaders message that shouldn't trigger headers announcements
                    # to resume (best header sent will be too old)
                    test_node.send_get_headers(locator=[fork_point],
                                               hashstop=new_block_hashes[1])
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                elif i == 2:
                    # This time, try sending either a getheaders to trigger resumption
                    # of headers announcements, or mine a new block and inv it, also
                    # triggering resumption of headers announcements.
                    test_node.send_get_data([tip])
                    test_node.wait_for_block(tip)
                    if j == 0:
                        test_node.send_get_headers(locator=[tip], hashstop=0)
                        test_node.sync_with_ping()
                    else:
                        test_node.send_block_inv(tip)
                        test_node.sync_with_ping()
            # New blocks should now be announced with header
            tip = self.mine_blocks(1)
            inv_node.check_last_inv_announcement(inv=[tip])
            test_node.check_last_headers_announcement(headers=[tip])

        self.log.info("Part 3: success!")

        self.log.info("Part 4: Testing direct fetch behavior...")
        tip = self.mine_blocks(1)
        height = self.nodes[0].getblockcount() + 1
        last_time = self.nodes[0].getblock(
            self.nodes[0].getbestblockhash())['time']
        block_time = last_time + 1
        final_tx = get_final_tx_info(self.nodes[0])

        # Create 2 blocks.  Send the blocks, then send the headers.
        blocks = []
        for b in range(2):
            block = create_block(tip, create_coinbase(height), block_time)
            final_tx = add_final_tx(final_tx, block)
            blocks.append(block)
            blocks[-1].solve()
            tip = blocks[-1].sha256
            block_time += 1
            height += 1
            inv_node.send_message(msg_block(blocks[-1]))

        inv_node.sync_with_ping()  # Make sure blocks are processed
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks)
        test_node.sync_with_ping()
        # should not have received any getdata messages
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        # This time, direct fetch should work
        blocks = []
        for b in range(3):
            block = create_block(tip, create_coinbase(height), block_time)
            final_tx = add_final_tx(final_tx, block)
            if not blocks:
                old_final_tx = final_tx
            blocks.append(block)
            blocks[-1].solve()
            tip = blocks[-1].sha256
            block_time += 1
            height += 1

        test_node.send_header_for_blocks(blocks)
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        [test_node.send_message(msg_block(x)) for x in blocks]

        test_node.sync_with_ping()

        # Now announce a header that forks the last two blocks
        tip = blocks[0].sha256
        height -= 2
        blocks = []
        final_tx = old_final_tx

        # Create extra blocks for later
        for b in range(20):
            block = create_block(tip, create_coinbase(height), block_time)
            final_tx = add_final_tx(final_tx, block)
            blocks.append(block)
            blocks[-1].solve()
            tip = blocks[-1].sha256
            block_time += 1
            height += 1

        # Announcing one block on fork should not trigger direct fetch
        # (less work than tip)
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks[0:1])
        test_node.sync_with_ping()
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        # Announcing one more block on fork should trigger direct fetch for
        # both blocks (same work as tip)
        test_node.send_header_for_blocks(blocks[1:2])
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks[0:2]],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        # Announcing 16 more headers should trigger direct fetch for 14 more
        # blocks
        test_node.send_header_for_blocks(blocks[2:18])
        test_node.sync_with_ping()
        test_node.wait_for_getdata([x.sha256 for x in blocks[2:16]],
                                   timeout=DIRECT_FETCH_RESPONSE_TIME)

        # Announcing 1 more header should not trigger any response
        test_node.last_message.pop("getdata", None)
        test_node.send_header_for_blocks(blocks[18:19])
        test_node.sync_with_ping()
        with mininode_lock:
            assert "getdata" not in test_node.last_message

        self.log.info("Part 4: success!")

        # Now deliver all those blocks we announced.
        [test_node.send_message(msg_block(x)) for x in blocks]

        self.log.info("Part 5: Testing handling of unconnecting headers")
        # First we test that receipt of an unconnecting header doesn't prevent
        # chain sync.
        for i in range(10):
            self.log.debug("Part 5.{}: starting...".format(i))
            test_node.last_message.pop("getdata", None)
            blocks = []
            # Create two more blocks.
            for j in range(2):
                block = create_block(tip, create_coinbase(height), block_time)
                final_tx = add_final_tx(final_tx, block)
                blocks.append(block)
                blocks[-1].solve()
                tip = blocks[-1].sha256
                block_time += 1
                height += 1
            # Send the header of the second block -> this won't connect.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[1]])
            test_node.wait_for_getheaders()
            test_node.send_header_for_blocks(blocks)
            test_node.wait_for_getdata([x.sha256 for x in blocks])
            [test_node.send_message(msg_block(x)) for x in blocks]
            test_node.sync_with_ping()
            assert_equal(int(self.nodes[0].getbestblockhash(), 16),
                         blocks[1].sha256)

        blocks = []
        # Now we test that if we repeatedly don't send connecting headers, we
        # don't go into an infinite loop trying to get them to connect.
        MAX_UNCONNECTING_HEADERS = 10
        for j in range(MAX_UNCONNECTING_HEADERS + 1):
            block = create_block(tip, create_coinbase(height), block_time)
            final_tx = add_final_tx(final_tx, block)
            blocks.append(block)
            blocks[-1].solve()
            tip = blocks[-1].sha256
            block_time += 1
            height += 1

        for i in range(1, MAX_UNCONNECTING_HEADERS):
            # Send a header that doesn't connect, check that we get a getheaders.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[i]])
            test_node.wait_for_getheaders()

        # Next header will connect, should re-set our count:
        test_node.send_header_for_blocks([blocks[0]])

        # Remove the first two entries (blocks[1] would connect):
        blocks = blocks[2:]

        # Now try to see how many unconnecting headers we can send
        # before we get disconnected.  Should be 5*MAX_UNCONNECTING_HEADERS
        for i in range(5 * MAX_UNCONNECTING_HEADERS - 1):
            # Send a header that doesn't connect, check that we get a getheaders.
            with mininode_lock:
                test_node.last_message.pop("getheaders", None)
            test_node.send_header_for_blocks([blocks[i % len(blocks)]])
            test_node.wait_for_getheaders()

        # Eventually this stops working.
        test_node.send_header_for_blocks([blocks[-1]])

        # Should get disconnected
        test_node.wait_for_disconnect()

        self.log.info("Part 5: success!")

        # Finally, check that the inv node never received a getdata request,
        # throughout the test
        assert "getdata" not in inv_node.last_message
Ejemplo n.º 9
0
    def run_test(self):
        # Add p2p connection to node0
        node = self.nodes[0]  # convenience reference to the node
        node.add_p2p_connection(P2PDataStore())

        # Let freicoind handle the block-final initial output logic
        self.nodes[0].generate(1)

        best_block = node.getblock(node.getbestblockhash())
        tip = int(node.getbestblockhash(), 16)
        height = best_block["height"] + 1
        block_time = best_block["time"] + 1

        self.log.info("Create a new block with an anyone-can-spend coinbase")

        height = self.nodes[0].getblockcount() + 1
        block = create_block(tip, create_coinbase(height), block_time)
        block.solve()
        # Save the coinbase for later
        block1 = block
        tip = block.sha256
        node.p2p.send_blocks_and_test([block1], node, success=True)

        self.log.info("Mature the block.")
        node.generatetoaddress(100, node.get_deterministic_priv_key().address)

        best_block = node.getblock(node.getbestblockhash())
        tip = int(node.getbestblockhash(), 16)
        height = best_block["height"] + 1
        block_time = best_block["time"] + 1
        final_tx = get_final_tx_info(node)

        # Use merkle-root malleability to generate an invalid block with
        # same blockheader.
        # Manufacture a block with 3 transactions (coinbase, spend of prior
        # coinbase, spend of that spend).  Duplicate the 3rd transaction to
        # leave merkle root and blockheader unchanged but invalidate the block.
        self.log.info("Test merkle root malleability.")

        block2 = create_block(tip, create_coinbase(height), block_time)
        block_time += 1

        # b'0x51' is OP_TRUE
        tx1 = create_tx_with_script(block1.vtx[0], 0, script_sig=b'\x51', amount=50 * COIN)
        tx2 = create_tx_with_script(tx1, 0, script_sig=b'\x51', amount=50 * COIN)

        block2.vtx.extend([tx1])
        block2.hashMerkleRoot = block2.calc_merkle_root()
        add_final_tx(final_tx, block2)
        block2.rehash()
        block2.solve()
        orig_hash = block2.sha256
        block2_orig = copy.deepcopy(block2)

        # Mutate block 2
        block2.vtx.append(block2.vtx[-1])
        assert_equal(block2.hashMerkleRoot, block2.calc_merkle_root())
        assert_equal(orig_hash, block2.rehash())
        assert block2_orig.vtx != block2.vtx

        node.p2p.send_blocks_and_test([block2], node, success=False, reject_reason='bad-txns-duplicate')

        # Check transactions for duplicate inputs
        self.log.info("Test duplicate input block.")

        block2_orig.vtx[1].vin.append(block2_orig.vtx[1].vin[0])
        block2_orig.vtx[1].rehash()
        block2_orig.hashMerkleRoot = block2_orig.calc_merkle_root()
        block2_orig.rehash()
        block2_orig.solve()
        node.p2p.send_blocks_and_test([block2_orig], node, success=False, reject_reason='bad-txns-inputs-duplicate')

        self.log.info("Test very broken block.")

        block3 = create_block(tip, create_coinbase(height), block_time)
        block_time += 1
        block3.vtx[0].vout[0].nValue = 1000000 * COIN # Too high!
        block3.vtx[0].sha256 = None
        block3.vtx[0].calc_sha256()
        block3.hashMerkleRoot = block3.calc_merkle_root()
        final_tx = add_final_tx(final_tx, block3)
        block3.rehash()
        block3.solve()

        node.p2p.send_blocks_and_test([block3], node, success=False, reject_reason='bad-cb-amount')
Ejemplo n.º 10
0
    def run_test(self):
        self.mine_chain()
        node = self.nodes[0]

        def assert_submitblock(block, result_str_1, result_str_2=None):
            block.solve()
            result_str_2 = result_str_2 or 'duplicate-invalid'
            assert_equal(result_str_1, node.submitblock(hexdata=b2x(block.serialize())))
            assert_equal(result_str_2, node.submitblock(hexdata=b2x(block.serialize())))

        self.log.info('getmininginfo')
        mining_info = node.getmininginfo()
        assert_equal(mining_info['blocks'], 200)
        assert_equal(mining_info['chain'], 'regtest')
        assert 'currentblocktx' not in mining_info
        assert 'currentblockweight' not in mining_info
        assert_equal(mining_info['difficulty'], Decimal('4.656542373906925E-10'))
        assert_equal(mining_info['networkhashps'], Decimal('0.003333333333333334'))
        assert_equal(mining_info['pooledtx'], 0)

        # Mine a block to leave initial block download
        node.generatetoaddress(1, node.get_deterministic_priv_key().address)
        tmpl = node.getblocktemplate({'rules': ['segwit','auxpow']})
        self.log.info("getblocktemplate: Test capability advertised")
        assert 'proposal' in tmpl['capabilities']
        assert 'coinbasetxn' not in tmpl

        next_height = int(tmpl["height"])
        coinbase_tx = create_coinbase(height=next_height)
        # sequence numbers must not be max for nLockTime to have effect
        coinbase_tx.vin[0].nSequence = 2 ** 32 - 2
        coinbase_tx.rehash()

        # round-trip the encoded bip34 block height commitment
        assert_equal(CScriptNum.decode(coinbase_tx.vin[0].scriptSig), next_height)
        # round-trip negative and multi-byte CScriptNums to catch python regression
        assert_equal(CScriptNum.decode(CScriptNum.encode(CScriptNum(1500))), 1500)
        assert_equal(CScriptNum.decode(CScriptNum.encode(CScriptNum(-1500))), -1500)
        assert_equal(CScriptNum.decode(CScriptNum.encode(CScriptNum(-1))), -1)

        block = CBlock()
        block.nVersion = tmpl["version"]
        block.hashPrevBlock = int(tmpl["previousblockhash"], 16)
        block.nTime = tmpl["curtime"]
        block.nBits = int(tmpl["bits"], 16)
        block.nNonce = 0
        block.vtx = [coinbase_tx]

        if 'finaltx' in tmpl and 'prevout' in tmpl['finaltx']:
            add_final_tx(tmpl['finaltx']['prevout'], block)

        self.log.info("getblocktemplate: segwit rule must be set")
        assert_raises_rpc_error(-8, "getblocktemplate must be called with the segwit rule set", node.getblocktemplate)

        self.log.info("getblocktemplate: Test valid block")
        assert_template(node, block, None)

        self.log.info("submitblock: Test block decode failure")
        assert_raises_rpc_error(-22, "Block decode failed", node.submitblock, b2x(block.serialize()[:-15]))

        self.log.info("getblocktemplate: Test bad input hash for coinbase transaction")
        bad_block = copy.deepcopy(block)
        bad_block.vtx[0].vin[0].prevout.hash += 1
        bad_block.vtx[0].rehash()
        assert_template(node, bad_block, 'bad-cb-missing')

        self.log.info("submitblock: Test invalid coinbase transaction")
        assert_raises_rpc_error(-22, "Block does not start with a coinbase", node.submitblock, b2x(bad_block.serialize()))

        self.log.info("getblocktemplate: Test truncated final transaction")
        assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(block.serialize()[:-1]), 'mode': 'proposal', 'rules': ['segwit']})

        self.log.info("getblocktemplate: Test duplicate transaction")
        bad_block = copy.deepcopy(block)
        bad_block.vtx.insert(-1, bad_block.vtx[0])
        assert_template(node, bad_block, 'bad-txns-duplicate')
        assert_submitblock(bad_block, 'bad-txns-duplicate', 'bad-txns-duplicate')

        self.log.info("getblocktemplate: Test invalid transaction")
        bad_block = copy.deepcopy(block)
        bad_tx = copy.deepcopy(bad_block.vtx[0])
        bad_tx.vin[0].prevout.hash = 255
        bad_tx.rehash()
        bad_block.vtx.insert(-1, bad_tx)
        assert_template(node, bad_block, 'bad-txns-inputs-missingorspent')
        assert_submitblock(bad_block, 'bad-txns-inputs-missingorspent')

        self.log.info("getblocktemplate: Test nonfinal transaction")
        bad_block = copy.deepcopy(block)
        bad_block.vtx[0].nLockTime = 2 ** 32 - 1
        bad_block.vtx[0].rehash()
        assert_template(node, bad_block, 'bad-txns-nonfinal')
        assert_submitblock(bad_block, 'bad-txns-nonfinal')

        self.log.info("getblocktemplate: Test bad tx count")
        # The tx count is immediately after the block header
        bad_block_sn = bytearray(block.serialize())
        assert_equal(bad_block_sn[BLOCK_HEADER_SIZE], 2)
        bad_block_sn[BLOCK_HEADER_SIZE] += 1
        assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(bad_block_sn), 'mode': 'proposal', 'rules': ['segwit', 'auxpow']})

        self.log.info("getblocktemplate: Test bad bits")
        bad_block = copy.deepcopy(block)
        bad_block.nBits = 469762303  # impossible in the real world
        assert_template(node, bad_block, 'bad-diffbits')

        self.log.info("getblocktemplate: Test bad merkle root")
        bad_block = copy.deepcopy(block)
        bad_block.hashMerkleRoot += 1
        assert_template(node, bad_block, 'bad-txnmrklroot', False)
        assert_submitblock(bad_block, 'bad-txnmrklroot', 'bad-txnmrklroot')

        self.log.info("getblocktemplate: Test bad timestamps")
        bad_block = copy.deepcopy(block)
        bad_block.nTime = 2 ** 31 - 1
        assert_template(node, bad_block, 'time-too-new')
        assert_submitblock(bad_block, 'time-too-new', 'time-too-new')
        bad_block.nTime = 0
        assert_template(node, bad_block, 'time-too-old')
        assert_submitblock(bad_block, 'time-too-old', 'time-too-old')

        self.log.info("getblocktemplate: Test not best block")
        bad_block = copy.deepcopy(block)
        bad_block.hashPrevBlock = 123
        assert_template(node, bad_block, 'inconclusive-not-best-prevblk')
        assert_submitblock(bad_block, 'prev-blk-not-found', 'prev-blk-not-found')

        self.log.info('submitheader tests')
        assert_raises_rpc_error(-22, 'Block header decode failed', lambda: node.submitheader(hexdata='xx' * BLOCK_HEADER_SIZE))
        assert_raises_rpc_error(-22, 'Block header decode failed', lambda: node.submitheader(hexdata='ff' * (BLOCK_HEADER_SIZE-2)))
        assert_raises_rpc_error(-25, 'Must submit previous header', lambda: node.submitheader(hexdata=b2x(super(CBlock, bad_block).serialize())))

        block.nTime += 1
        block.solve()

        def chain_tip(b_hash, *, status='headers-only', branchlen=1):
            return {'hash': b_hash, 'height': 202, 'branchlen': branchlen, 'status': status}

        assert chain_tip(block.hash) not in node.getchaintips()
        node.submitheader(hexdata=b2x(block.serialize()))
        assert chain_tip(block.hash) in node.getchaintips()
        node.submitheader(hexdata=b2x(CBlockHeader(block).serialize()))  # Noop
        assert chain_tip(block.hash) in node.getchaintips()

        bad_block_root = copy.deepcopy(block)
        bad_block_root.hashMerkleRoot += 2
        bad_block_root.solve()
        assert chain_tip(bad_block_root.hash) not in node.getchaintips()
        node.submitheader(hexdata=b2x(CBlockHeader(bad_block_root).serialize()))
        assert chain_tip(bad_block_root.hash) in node.getchaintips()
        # Should still reject invalid blocks, even if we have the header:
        assert_equal(node.submitblock(hexdata=b2x(bad_block_root.serialize())), 'bad-txnmrklroot')
        assert_equal(node.submitblock(hexdata=b2x(bad_block_root.serialize())), 'bad-txnmrklroot')
        assert chain_tip(bad_block_root.hash) in node.getchaintips()
        # We know the header for this invalid block, so should just return early without error:
        node.submitheader(hexdata=b2x(CBlockHeader(bad_block_root).serialize()))
        assert chain_tip(bad_block_root.hash) in node.getchaintips()

        bad_block_lock = copy.deepcopy(block)
        bad_block_lock.vtx[0].nLockTime = 2**32 - 1
        bad_block_lock.vtx[0].rehash()
        bad_block_lock.hashMerkleRoot = bad_block_lock.calc_merkle_root()
        bad_block_lock.solve()
        assert_equal(node.submitblock(hexdata=b2x(bad_block_lock.serialize())), 'bad-txns-nonfinal')
        assert_equal(node.submitblock(hexdata=b2x(bad_block_lock.serialize())), 'duplicate-invalid')
        # Build a "good" block on top of the submitted bad block
        bad_block2 = copy.deepcopy(block)
        bad_block2.hashPrevBlock = bad_block_lock.sha256
        bad_block2.solve()
        assert_raises_rpc_error(-25, 'bad-prevblk', lambda: node.submitheader(hexdata=b2x(CBlockHeader(bad_block2).serialize())))

        # Should reject invalid header right away
        bad_block_time = copy.deepcopy(block)
        bad_block_time.nTime = 1
        bad_block_time.solve()
        assert_raises_rpc_error(-25, 'time-too-old', lambda: node.submitheader(hexdata=b2x(CBlockHeader(bad_block_time).serialize())))

        # Should ask for the block from a p2p node, if they announce the header as well:
        node.add_p2p_connection(P2PDataStore())
        node.p2p.wait_for_getheaders(timeout=5)  # Drop the first getheaders
        node.p2p.send_blocks_and_test(blocks=[block], node=node)
        # Must be active now:
        assert chain_tip(block.hash, status='active', branchlen=0) in node.getchaintips()

        # Building a few blocks should give the same results
        node.generatetoaddress(10, node.get_deterministic_priv_key().address)
        assert_raises_rpc_error(-25, 'time-too-old', lambda: node.submitheader(hexdata=b2x(CBlockHeader(bad_block_time).serialize())))
        assert_raises_rpc_error(-25, 'bad-prevblk', lambda: node.submitheader(hexdata=b2x(CBlockHeader(bad_block2).serialize())))
        node.submitheader(hexdata=b2x(CBlockHeader(block).serialize()))
        node.submitheader(hexdata=b2x(CBlockHeader(bad_block_root).serialize()))
        assert_equal(node.submitblock(hexdata=b2x(block.serialize())), 'duplicate')  # valid
Ejemplo n.º 11
0
    def run_test(self):
        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())

        # Build the blockchain
        self.tip = int(self.nodes[0].getbestblockhash(), 16)
        self.block_time = self.nodes[0].getblock(
            self.nodes[0].getbestblockhash())['time'] + 1

        self.blocks = []

        # Get a pubkey for the coinbase TXO
        coinbase_key = ECKey()
        coinbase_key.generate()
        coinbase_pubkey = coinbase_key.get_pubkey().get_bytes()

        # Create the first block with a coinbase output to our key
        height = 1
        block = create_block(self.tip, create_coinbase(height,
                                                       coinbase_pubkey),
                             self.block_time)
        block.vtx[0].vout.insert(0, CTxOut(0, CScript([OP_TRUE])))
        block.vtx[0].rehash()
        final_tx = [{
            'txid': block.vtx[0].hash,
            'vout': 0,
            'amount': 0,
        }]
        block.hashMerkleRoot = block.calc_merkle_root()
        block.rehash()
        self.blocks.append(block)
        self.block_time += 1
        block.solve()
        # Save the coinbase for later
        self.block1 = block
        self.tip = block.sha256
        height += 1

        # Bury the block 100 deep so the coinbase output is spendable
        for i in range(100):
            block = create_block(self.tip, create_coinbase(height),
                                 self.block_time)
            if height > 100:
                final_tx = add_final_tx(final_tx, block)
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            height += 1

        # Create a transaction spending the coinbase output with an invalid (null) signature
        tx = CTransaction()
        tx.vin.append(
            CTxIn(COutPoint(self.block1.vtx[0].sha256, 1), scriptSig=b""))
        tx.vout.append(CTxOut(49 * 100000000, CScript([OP_TRUE])))
        tx.calc_sha256()

        block102 = create_block(self.tip, create_coinbase(height),
                                self.block_time)
        self.block_time += 1
        block102.vtx.extend([tx])
        final_tx = add_final_tx(final_tx, block102)
        block102.hashMerkleRoot = block102.calc_merkle_root()
        block102.rehash()
        block102.solve()
        self.blocks.append(block102)
        self.tip = block102.sha256
        self.block_time += 1
        height += 1

        # Bury the assumed valid block 2100 deep
        for i in range(2100):
            block = create_block(self.tip, create_coinbase(height),
                                 self.block_time)
            final_tx = add_final_tx(final_tx, block)
            block.nVersion = 4
            block.solve()
            self.blocks.append(block)
            self.tip = block.sha256
            self.block_time += 1
            height += 1

        self.nodes[0].disconnect_p2ps()

        # Start node1 and node2 with assumevalid so they accept a block with a bad signature.
        self.start_node(1, extra_args=["-assumevalid=" + hex(block102.sha256)])
        self.start_node(2, extra_args=["-assumevalid=" + hex(block102.sha256)])

        p2p0 = self.nodes[0].add_p2p_connection(BaseNode())
        p2p1 = self.nodes[1].add_p2p_connection(BaseNode())
        p2p2 = self.nodes[2].add_p2p_connection(BaseNode())

        # send header lists to all three nodes
        p2p0.send_header_for_blocks(self.blocks[0:2000])
        p2p0.send_header_for_blocks(self.blocks[2000:])
        p2p1.send_header_for_blocks(self.blocks[0:2000])
        p2p1.send_header_for_blocks(self.blocks[2000:])
        p2p2.send_header_for_blocks(self.blocks[0:200])

        # Send blocks to node0. Block 102 will be rejected.
        self.send_blocks_until_disconnected(p2p0)
        self.assert_blockchain_height(self.nodes[0], 101)

        # Send all blocks to node1. All blocks will be accepted.
        for i in range(2202):
            p2p1.send_message(msg_block(self.blocks[i]))
        # Syncing 2200 blocks can take a while on slow systems. Give it plenty of time to sync.
        p2p1.sync_with_ping(200)
        assert_equal(
            self.nodes[1].getblock(self.nodes[1].getbestblockhash())['height'],
            2202)

        # Send blocks to node2. Block 102 will be rejected.
        self.send_blocks_until_disconnected(p2p2)
        self.assert_blockchain_height(self.nodes[2], 101)
Ejemplo n.º 12
0
    def test_sequence_lock_unconfirmed_inputs(self):
        # Store height so we can easily reset the chain at the end of the test
        cur_height = self.nodes[0].getblockcount()

        # Create a mempool tx.
        txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
        tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
        tx1.rehash()

        # Anyone-can-spend mempool tx.
        # Sequence lock of 0 should pass.
        tx2 = CTransaction()
        tx2.nVersion = 2
        tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
        tx2.vout = [
            CTxOut(int(tx1.vout[0].nValue - self.relayfee * COIN),
                   CScript([b'a']))
        ]
        tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
        tx2 = FromHex(tx2, tx2_raw)
        tx2.rehash()

        self.nodes[0].sendrawtransaction(tx2_raw)

        # Create a spend of the 0th output of orig_tx with a sequence lock
        # of 1, and test what happens when submitting.
        # orig_tx.vout[0] must be an anyone-can-spend output
        def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
            sequence_value = 1
            if not use_height_lock:
                sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG

            tx = CTransaction()
            tx.nVersion = 2
            tx.vin = [
                CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)
            ]
            tx.vout = [
                CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN),
                       CScript([b'a' * 35]))
            ]
            tx.rehash()

            if (orig_tx.hash in node.getrawmempool()):
                # sendrawtransaction should fail if the tx is in the mempool
                assert_raises_rpc_error(-26, NOT_FINAL_ERROR,
                                        node.sendrawtransaction, ToHex(tx))
            else:
                # sendrawtransaction should succeed if the tx is not in the mempool
                node.sendrawtransaction(ToHex(tx))

            return tx

        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=True)
        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=False)

        # Now mine some blocks, but make sure tx2 doesn't get mined.
        # Use prioritisetransaction to lower the effective feerate to 0
        self.nodes[0].prioritisetransaction(txid=tx2.hash,
                                            fee_delta=int(-self.relayfee *
                                                          COIN))
        cur_time = int(time.time())
        for i in range(10):
            self.nodes[0].setmocktime(cur_time + 600)
            self.nodes[0].generate(1)
            cur_time += 600

        assert (tx2.hash in self.nodes[0].getrawmempool())

        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=True)
        test_nonzero_locks(tx2,
                           self.nodes[0],
                           self.relayfee,
                           use_height_lock=False)

        # Save the block-final tx info for later reorg
        final_tx = get_final_tx_info(self.nodes[0])

        # Mine tx2, and then try again
        self.nodes[0].prioritisetransaction(txid=tx2.hash,
                                            fee_delta=int(self.relayfee *
                                                          COIN))

        # Advance the time on the node so that we can test timelocks
        self.nodes[0].setmocktime(cur_time + 600)
        self.nodes[0].generate(1)
        assert (tx2.hash not in self.nodes[0].getrawmempool())

        # Now that tx2 is not in the mempool, a sequence locked spend should
        # succeed
        tx3 = test_nonzero_locks(tx2,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=False)
        assert (tx3.hash in self.nodes[0].getrawmempool())

        self.nodes[0].generate(1)
        assert (tx3.hash not in self.nodes[0].getrawmempool())

        # One more test, this time using height locks
        tx4 = test_nonzero_locks(tx3,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=True)
        assert (tx4.hash in self.nodes[0].getrawmempool())

        # Now try combining confirmed and unconfirmed inputs
        tx5 = test_nonzero_locks(tx4,
                                 self.nodes[0],
                                 self.relayfee,
                                 use_height_lock=True)
        assert (tx5.hash not in self.nodes[0].getrawmempool())

        utxos = self.nodes[0].listunspent()
        tx5.vin.append(
            CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]),
                  nSequence=1))
        tx5.vout[0].nValue += int(utxos[0]["amount"] * COIN)
        raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]

        assert_raises_rpc_error(-26, NOT_FINAL_ERROR,
                                self.nodes[0].sendrawtransaction, raw_tx5)

        # Test mempool-BIP68 consistency after reorg
        #
        # State of the transactions in the last blocks:
        # ... -> [ tx2 ] ->  [ tx3 ]
        #         tip-1        tip
        # And currently tx4 is in the mempool.
        #
        # If we invalidate the tip, tx3 should get added to the mempool, causing
        # tx4 to be removed (fails sequence-lock).
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        assert (tx4.hash not in self.nodes[0].getrawmempool())
        assert (tx3.hash in self.nodes[0].getrawmempool())

        # Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
        # diagram above).
        # This would cause tx2 to be added back to the mempool, which in turn causes
        # tx3 to be removed.
        tip = int(
            self.nodes[0].getblockhash(self.nodes[0].getblockcount() - 1), 16)
        height = self.nodes[0].getblockcount()
        for i in range(2):
            block = create_block(tip, create_coinbase(height), cur_time)
            final_tx = add_final_tx(final_tx, block)
            block.nVersion = 3
            block.rehash()
            block.solve()
            tip = block.sha256
            height += 1
            self.nodes[0].submitblock(ToHex(block))
            cur_time += 1

        mempool = self.nodes[0].getrawmempool()
        assert (tx3.hash not in mempool)
        assert (tx2.hash in mempool)

        # Reset the chain and get rid of the mocktimed-blocks
        self.nodes[0].setmocktime(0)
        self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height +
                                                                 1))
        self.nodes[0].generate(10)
Ejemplo n.º 13
0
    def run_test(self):
        # Setup the p2p connections
        # test_node connects to node0 (not whitelisted)
        test_node = self.nodes[0].add_p2p_connection(P2PInterface())
        # min_work_node connects to node1 (whitelisted)
        min_work_node = self.nodes[1].add_p2p_connection(P2PInterface())

        # 1. Have nodes mine a block (leave IBD)
        [
            n.generatetoaddress(1,
                                n.get_deterministic_priv_key().address)
            for n in self.nodes
        ]
        tips = [int("0x" + n.getbestblockhash(), 0) for n in self.nodes]

        # 2. Send one block that builds on each tip.
        # This should be accepted by node0
        blocks_h2 = []  # the height 2 blocks on each node's chain
        block_time = int(time.time()) + 1
        for i in range(2):
            blocks_h2.append(
                create_block(tips[i], create_coinbase(2), block_time))
            blocks_h2[i].solve()
            block_time += 1
        test_node.send_message(msg_block(blocks_h2[0]))
        min_work_node.send_message(msg_block(blocks_h2[1]))

        for x in [test_node, min_work_node]:
            x.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 2)
        assert_equal(self.nodes[1].getblockcount(), 1)
        self.log.info(
            "First height 2 block accepted by node0; correctly rejected by node1"
        )

        # 3. Send another block that builds on genesis.
        block_h1f = create_block(int("0x" + self.nodes[0].getblockhash(0), 0),
                                 create_coinbase(1), block_time)
        block_time += 1
        block_h1f.solve()
        test_node.send_message(msg_block(block_h1f))

        test_node.sync_with_ping()
        tip_entry_found = False
        for x in self.nodes[0].getchaintips():
            if x['hash'] == block_h1f.hash:
                assert_equal(x['status'], "headers-only")
                tip_entry_found = True
        assert (tip_entry_found)
        assert_raises_rpc_error(-1, "Block not found on disk",
                                self.nodes[0].getblock, block_h1f.hash)

        # 4. Send another two block that build on the fork.
        block_h2f = create_block(block_h1f.sha256, create_coinbase(2),
                                 block_time)
        block_time += 1
        block_h2f.solve()
        test_node.send_message(msg_block(block_h2f))

        test_node.sync_with_ping()
        # Since the earlier block was not processed by node, the new block
        # can't be fully validated.
        tip_entry_found = False
        for x in self.nodes[0].getchaintips():
            if x['hash'] == block_h2f.hash:
                assert_equal(x['status'], "headers-only")
                tip_entry_found = True
        assert (tip_entry_found)

        # But this block should be accepted by node since it has equal work.
        self.nodes[0].getblock(block_h2f.hash)
        self.log.info("Second height 2 block accepted, but not reorg'ed to")

        # 4b. Now send another block that builds on the forking chain.
        block_h3 = create_block(block_h2f.sha256, create_coinbase(3),
                                block_h2f.nTime + 1)
        block_h3.solve()
        test_node.send_message(msg_block(block_h3))

        test_node.sync_with_ping()
        # Since the earlier block was not processed by node, the new block
        # can't be fully validated.
        tip_entry_found = False
        for x in self.nodes[0].getchaintips():
            if x['hash'] == block_h3.hash:
                assert_equal(x['status'], "headers-only")
                tip_entry_found = True
        assert (tip_entry_found)
        self.nodes[0].getblock(block_h3.hash)

        # But this block should be accepted by node since it has more work.
        self.nodes[0].getblock(block_h3.hash)
        self.log.info("Unrequested more-work block accepted")

        # 4c. Now mine 288 more blocks and deliver; all should be processed but
        # the last (height-too-high) on node (as long as it is not missing any headers)
        tip = block_h3
        final_tx = [{
            'txid': block_h1f.vtx[0].hash,
            'vout': 0,
            'amount': 0,
        }]
        all_blocks = []
        for i in range(288):
            height = i + 4
            next_block = create_block(tip.sha256, create_coinbase(height),
                                      tip.nTime + 1)
            if height > 100:
                final_tx = add_final_tx(final_tx, next_block)
            next_block.solve()
            all_blocks.append(next_block)
            tip = next_block

        # Now send the block at height 5 and check that it wasn't accepted (missing header)
        test_node.send_message(msg_block(all_blocks[1]))
        test_node.sync_with_ping()
        assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock,
                                all_blocks[1].hash)
        assert_raises_rpc_error(-5, "Block not found",
                                self.nodes[0].getblockheader,
                                all_blocks[1].hash)

        # The block at height 5 should be accepted if we provide the missing header, though
        headers_message = msg_headers()
        headers_message.headers.append(CBlockHeader(all_blocks[0]))
        test_node.send_message(headers_message)
        test_node.send_message(msg_block(all_blocks[1]))
        test_node.sync_with_ping()
        self.nodes[0].getblock(all_blocks[1].hash)

        # Now send the blocks in all_blocks
        for i in range(288):
            test_node.send_message(msg_block(all_blocks[i]))
        test_node.sync_with_ping()

        # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead
        for x in all_blocks[:-1]:
            self.nodes[0].getblock(x.hash)
        assert_raises_rpc_error(-1, "Block not found on disk",
                                self.nodes[0].getblock, all_blocks[-1].hash)

        # 5. Test handling of unrequested block on the node that didn't process
        # Should still not be processed (even though it has a child that has more
        # work).

        # The node should have requested the blocks at some point, so
        # disconnect/reconnect first

        self.nodes[0].disconnect_p2ps()
        self.nodes[1].disconnect_p2ps()

        test_node = self.nodes[0].add_p2p_connection(P2PInterface())

        test_node.send_message(msg_block(block_h1f))

        test_node.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 2)
        self.log.info(
            "Unrequested block that would complete more-work chain was ignored"
        )

        # 6. Try to get node to request the missing block.
        # Poke the node with an inv for block at height 3 and see if that
        # triggers a getdata on block 2 (it should if block 2 is missing).
        with mininode_lock:
            # Clear state so we can check the getdata request
            test_node.last_message.pop("getdata", None)
            test_node.send_message(msg_inv([CInv(2, block_h3.sha256)]))

        test_node.sync_with_ping()
        with mininode_lock:
            getdata = test_node.last_message["getdata"]

        # Check that the getdata includes the right block
        assert_equal(getdata.inv[0].hash, block_h1f.sha256)
        self.log.info("Inv at tip triggered getdata for unprocessed block")

        # 7. Send the missing block for the third time (now it is requested)
        test_node.send_message(msg_block(block_h1f))

        test_node.sync_with_ping()
        assert_equal(self.nodes[0].getblockcount(), 290)
        self.nodes[0].getblock(all_blocks[286].hash)
        assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash)
        assert_raises_rpc_error(-1, "Block not found on disk",
                                self.nodes[0].getblock, all_blocks[287].hash)
        self.log.info(
            "Successfully reorged to longer chain from non-whitelisted peer")

        # 8. Create a chain which is invalid at a height longer than the
        # current chain, but which has more blocks on top of that
        block_289f = create_block(all_blocks[284].sha256, create_coinbase(289),
                                  all_blocks[284].nTime + 1)
        block_289f.solve()
        block_290f = create_block(block_289f.sha256, create_coinbase(290),
                                  block_289f.nTime + 1)
        block_290f.solve()
        block_291 = create_block(block_290f.sha256, create_coinbase(291),
                                 block_290f.nTime + 1)
        # block_291 spends a coinbase below maturity!
        block_291.vtx.append(
            create_tx_with_script(block_290f.vtx[0],
                                  0,
                                  script_sig=b"42",
                                  amount=1))
        block_291.hashMerkleRoot = block_291.calc_merkle_root()
        block_291.solve()
        block_292 = create_block(block_291.sha256, create_coinbase(292),
                                 block_291.nTime + 1)
        block_292.solve()

        # Now send all the headers on the chain and enough blocks to trigger reorg
        headers_message = msg_headers()
        headers_message.headers.append(CBlockHeader(block_289f))
        headers_message.headers.append(CBlockHeader(block_290f))
        headers_message.headers.append(CBlockHeader(block_291))
        headers_message.headers.append(CBlockHeader(block_292))
        test_node.send_message(headers_message)

        test_node.sync_with_ping()
        tip_entry_found = False
        for x in self.nodes[0].getchaintips():
            if x['hash'] == block_292.hash:
                assert_equal(x['status'], "headers-only")
                tip_entry_found = True
        assert (tip_entry_found)
        assert_raises_rpc_error(-1, "Block not found on disk",
                                self.nodes[0].getblock, block_292.hash)

        test_node.send_message(msg_block(block_289f))
        test_node.send_message(msg_block(block_290f))

        test_node.sync_with_ping()
        self.nodes[0].getblock(block_289f.hash)
        self.nodes[0].getblock(block_290f.hash)

        test_node.send_message(msg_block(block_291))

        # At this point we've sent an obviously-bogus block, wait for full processing
        # without assuming whether we will be disconnected or not
        try:
            # Only wait a short while so the test doesn't take forever if we do get
            # disconnected
            test_node.sync_with_ping(timeout=1)
        except AssertionError:
            test_node.wait_for_disconnect()

            self.nodes[0].disconnect_p2ps()
            test_node = self.nodes[0].add_p2p_connection(P2PInterface())

        # We should have failed reorg and switched back to 290 (but have block 291)
        assert_equal(self.nodes[0].getblockcount(), 290)
        assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash)
        assert_equal(self.nodes[0].getblock(block_291.hash)["confirmations"],
                     -1)

        # Now send a new header on the invalid chain, indicating we're forked off, and expect to get disconnected
        block_293 = create_block(block_292.sha256, create_coinbase(293),
                                 block_292.nTime + 1)
        block_293.solve()
        headers_message = msg_headers()
        headers_message.headers.append(CBlockHeader(block_293))
        test_node.send_message(headers_message)
        test_node.wait_for_disconnect()

        # 9. Connect node1 to node0 and ensure it is able to sync
        connect_nodes(self.nodes[0], 1)
        sync_blocks([self.nodes[0], self.nodes[1]])
        self.log.info("Successfully synced nodes 1 and 0")