Ejemplo n.º 1
0
    def train(self, to_static=False):
        np.random.seed(SEED)
        paddle.seed(SEED)
        paddle.framework.random._manual_program_seed(SEED)

        mnist = MNIST()

        if to_static:
            print("Successfully to apply @to_static.")
            build_strategy = paddle.static.BuildStrategy()
            # Why set `build_strategy.enable_inplace = False` here?
            # Because we find that this PASS strategy of PE makes dy2st training loss unstable.
            build_strategy.enable_inplace = False
            mnist = paddle.jit.to_static(mnist, build_strategy=build_strategy)

        optimizer = paddle.optimizer.Adam(learning_rate=0.001,
                                          parameters=mnist.parameters())

        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        mnist, optimizer = paddle.amp.decorate(models=mnist,
                                               optimizers=optimizer,
                                               level='O2',
                                               save_dtype='float32')

        loss_data = []
        for epoch in range(self.epoch_num):
            start = time()
            for batch_id, data in enumerate(self.train_reader()):
                dy_x_data = np.array([x[0].reshape(1, 28, 28)
                                      for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data
                                   ]).astype('int64').reshape(-1, 1)

                img = paddle.to_tensor(dy_x_data)
                label = paddle.to_tensor(y_data)
                label.stop_gradient = True

                with paddle.amp.auto_cast(enable=True,
                                          custom_white_list=None,
                                          custom_black_list=None,
                                          level='O2'):
                    prediction, acc, avg_loss = mnist(img, label=label)

                scaled = scaler.scale(avg_loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)

                loss_data.append(avg_loss.numpy()[0])
                # save checkpoint
                mnist.clear_gradients()
                if batch_id % 2 == 0:
                    print(
                        "Loss at epoch {} step {}: loss: {:}, acc: {}, cost: {}"
                        .format(epoch, batch_id, avg_loss.numpy(), acc.numpy(),
                                time() - start))
                    start = time()
                if batch_id == 10:
                    break
        return loss_data
Ejemplo n.º 2
0
    def train(self, to_static=False):
        paddle.seed(SEED)
        mnist = MNIST()

        if to_static:
            print("Successfully to apply @to_static.")
            mnist = paddle.jit.to_static(mnist)

        adam = AdamOptimizer(learning_rate=0.001,
                             parameter_list=mnist.parameters())

        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

        loss_data = []
        for epoch in range(self.epoch_num):
            start = time()
            for batch_id, data in enumerate(self.train_reader()):
                dy_x_data = np.array([x[0].reshape(1, 28, 28)
                                      for x in data]).astype('float32')
                y_data = np.array([x[1] for x in data
                                   ]).astype('int64').reshape(-1, 1)

                img = paddle.to_tensor(dy_x_data)
                label = paddle.to_tensor(y_data)
                label.stop_gradient = True

                with paddle.amp.auto_cast():
                    prediction, acc, avg_loss = mnist(img, label=label)

                scaled = scaler.scale(avg_loss)
                scaled.backward()
                scaler.minimize(adam, scaled)

                loss_data.append(avg_loss.numpy()[0])
                # save checkpoint
                mnist.clear_gradients()
                if batch_id % 10 == 0:
                    print(
                        "Loss at epoch {} step {}: loss: {:}, acc: {}, cost: {}"
                        .format(epoch, batch_id, avg_loss.numpy(), acc.numpy(),
                                time() - start))
                    start = time()
                if batch_id == 50:
                    break
        return loss_data
Ejemplo n.º 3
0
class MnistPredictionServiceSubclass(
        mnist_pb2_grpc.MnistPredictionServiceServicer):
    def __init__(self):
        self.mnist = MNIST()

    def MnistPredict(self, request, context):
        request_map = request.inputs
        inputs = cv2.imdecode(np.frombuffer(request.inputs, dtype='uint8'), 1)

        predict_result, predict_probability = self.mnist.interface(inputs)
        logging.info("predict_result{}predict_probability{}".format(
            predict_result, predict_probability))
        response = mnist_pb2.MnistPredictResponse()
        response.outputs = str(predict_result[0])
        response.probability = predict_probability
        return response
Ejemplo n.º 4
0
import web
import os, sys
import io
import base64
import numpy as np
import json
import cv2

sys.path.append("../train_test_mnist/")
from test_mnist import MNIST

mnist = MNIST()

urls = ('/predict', 'MNIST_SERVER')


class MNIST_SERVER():
    def GET(self):
        pass

    def POST(self):
        try:
            form = web.input()
        except ValueError as e:
            return e

        data = {"success": False}
        image_file_value = base64.urlsafe_b64decode(form['image'])
        image = cv2.imdecode(np.frombuffer(image_file_value, dtype='uint8'), 1)

        predict_result, predict_probability = mnist.interface(image)
Ejemplo n.º 5
0
 def __init__(self):
     self.mnist = MNIST()