Ejemplo n.º 1
0
def f_saliency_whitebox_tcebp(wb, im):
    img_saliency = wb.truncated_contrastive_ebp(wb.net.preprocess(im.pil()), k_poschannel=0, k_negchannel=1, percentile=20)
    if np.max(img_saliency) == 255:
        img_saliency = img_saliency.astype(np.float32)/255.0
    return np.array(_blend_saliency_map(np.array(im.pil().resize(img_saliency.shape)), img_saliency, gamma=0.5))
Ejemplo n.º 2
0
def f_saliency_whitebox_weighted_subtree_lightcnn(wb, im):
    img_probe = wb.net.preprocess(im.pil())
    (img_saliency, P_img, P_subtree, k_subtree) = wb.weighted_subtree_ebp(img_probe, k_poschannel=0, k_negchannel=1, topk=64, do_max_subtree=False, subtree_mode='affineonly_with_prior', do_mated_similarity_gating=True, verbose=False)    
    img_saliency = np.float32(img_saliency)/255.0
    return np.array(_blend_saliency_map(np.array(im.pil().resize(img_saliency.shape)), img_saliency, gamma=0.5))
Ejemplo n.º 3
0
def f_saliency_whitebox_ebp(wb, im):
    P = torch.zeros( (1, wb.net.num_classes()) );  P[0][0] = 1.0;  # one-hot prior probability  
    img_saliency = wb.ebp(wb.net.preprocess(im.pil()), P)
    if np.max(img_saliency) == 255:
        img_saliency = img_saliency.astype(np.float32)/255.0
    return np.array(_blend_saliency_map(np.array(im.pil().resize(img_saliency.shape)), img_saliency, gamma=0.5))