Ejemplo n.º 1
0
steerSampleSTD=steer.std()
np.savez("steerstats.npz", [steerSampleMean, steerSampleSTD])
from testmodel import model
model.load_weights('Nweights.h5')

img_files=glob.glob(os.path.join(data_dir, 'imgs*.npz'))

imgs=np.zeros((100*len(img_files), 78, 128, 3)).astype('float32')
i=0
for imgfile in sorted(img_files):
    imdata=np.load(imgfile)['arr_0'].astype('float32')
    j=0
    for tim in imdata:
        im=tim[0:78, :]
        immean=im.mean()
        imdev=im.std()
        imgs[i*100+j]=(im-immean)/imdev
        j+=1
    i+=1

for n in range(num_epochs):
    print("starting epoch {0}".format(n))
    h=model.fit([imgs], [(steer-steerSampleMean)/steerSampleSTD], 
                batch_size=25, epochs=1, verbose=1, validation_split=0.1, shuffle=True)

    if n%save_epochs ==0 :
        print("Saving epoch {0} to {1}".format(n, weightfile))
        model.save_weights(weightfile, overwrite=True)

model.save_weights(weightfile, overwrite=True)
Ejemplo n.º 2
0
steerSampleMean = steer.mean()
steerSampleSTD = steer.std()
print(steerSampleMean)
print(steerSampleSTD)
from testmodel import model

img_files = glob.glob(os.path.join(data_dir, 'imgs*.npz'))
command_files = glob.glob(os.path.join(data_dir, 'commands*.npz'))

imgs = np.array((100, 96, 128, 3))
commands = np.array((100, 2))
for n in range(num_epochs):
    print("starting epoch {0}".format(n))
    for i, c in zip(sorted(img_files), sorted(command_files)):
        print(i, c)
        imgs = np.load(i)['arr_0']
        commands = np.load(c)['arr_0']
        h = model.fit([imgs],
                      [(commands[:, 0] - steerSampleMean) / steerSampleSTD],
                      batch_size=32,
                      epochs=1,
                      verbose=1,
                      validation_split=0.1,
                      shuffle=True)

    if n % save_epochs == 0:
        print("Saving epoch {0} to {1}".format(n, weightfile))
        model.save_weights(weightfile, overwrite=True)

model.save_weights(weightfile, overwrite=True)