Ejemplo n.º 1
0
    def test_checkIfOnlyBestMappingIsKept_ChoosesTheOneWithHighestGTConf(self):
        dfs = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.UNMAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PARTIALLY_MAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PRIMARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.SECONDARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row(
                "truth_probe_1",
                AlignmentAssessment.SUPPLEMENTARY_INCORRECT,
                gt_conf=100,
                with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PRIMARY_CORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.SECONDARY_CORRECT,
                                     gt_conf=200,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.SUPPLEMENTARY_CORRECT,
                                     gt_conf=150,
                                     with_gt_conf=True),
        ], )

        report = RecallReport([dfs])
        actual = report.report
        expected = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.SECONDARY_CORRECT,
                                     gt_conf=200,
                                     with_gt_conf=True)
        ])
        assert_frame_equal(actual, expected, check_dtype=False)
Ejemplo n.º 2
0
    def test_checkIfOnlyBestMappingIsKept_hasPrimaryMapping_and_several_dfs(
            self):
        df_1 = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.UNMAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PARTIALLY_MAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )
        df_2 = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PRIMARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.SECONDARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )
        df_3 = pd.DataFrame(data=[
            create_recall_report_row(
                "truth_probe_1",
                AlignmentAssessment.SUPPLEMENTARY_INCORRECT,
                gt_conf=100,
                with_gt_conf=True),
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PRIMARY_CORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )

        report = RecallReport([df_1, df_2, df_3])
        actual = report.report
        expected = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.PRIMARY_CORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True)
        ])
        assert_frame_equal(actual, expected, check_dtype=False)
Ejemplo n.º 3
0
    def test_simple_concatenation_with_several_dfs(self):
        df_1 = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.UNMAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_2",
                                     AlignmentAssessment.PARTIALLY_MAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )
        df_2 = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_3",
                                     AlignmentAssessment.PRIMARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_4",
                                     AlignmentAssessment.SECONDARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )
        df_3 = pd.DataFrame(data=[
            create_recall_report_row(
                "truth_probe_5",
                AlignmentAssessment.SUPPLEMENTARY_INCORRECT,
                gt_conf=100,
                with_gt_conf=True),
            create_recall_report_row("truth_probe_6",
                                     AlignmentAssessment.PRIMARY_CORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ], )

        report = RecallReport(
            [df_1, df_2, df_3],
            concatenate_dfs_one_by_one_keeping_only_best_mappings=False)
        actual = report.report
        expected = pd.DataFrame(data=[
            create_recall_report_row("truth_probe_1",
                                     AlignmentAssessment.UNMAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_2",
                                     AlignmentAssessment.PARTIALLY_MAPPED,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_3",
                                     AlignmentAssessment.PRIMARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row("truth_probe_4",
                                     AlignmentAssessment.SECONDARY_INCORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
            create_recall_report_row(
                "truth_probe_5",
                AlignmentAssessment.SUPPLEMENTARY_INCORRECT,
                gt_conf=100,
                with_gt_conf=True),
            create_recall_report_row("truth_probe_6",
                                     AlignmentAssessment.PRIMARY_CORRECT,
                                     gt_conf=100,
                                     with_gt_conf=True),
        ])
        assert_frame_equal(actual, expected, check_dtype=False)