Ejemplo n.º 1
0
    def create_column(self, col_name, col_type):
        ''' Takes the output from parse_col_desc and creates the right column type. This
    method returns one of Column, ArrayColumn, MapColumn, StructColumn.'''
        if isinstance(col_type, str):
            if col_type.upper() == 'VARCHAR':
                col_type = 'STRING'
            type_name = self.TYPE_NAME_ALIASES.get(col_type.upper())
            return Column(owner=None,
                          name=col_name.lower(),
                          exact_type=self.TYPES_BY_NAME[type_name])

        general_class = col_type[0]

        if general_class.upper() == 'ARRAY':
            return ArrayColumn(owner=None,
                               name=col_name.lower(),
                               item=self.create_column(col_name='item',
                                                       col_type=col_type[1]))

        if general_class.upper() == 'MAP':
            return MapColumn(owner=None,
                             name=col_name.lower(),
                             key=self.create_column(col_name='key',
                                                    col_type=col_type[1]),
                             value=self.create_column(col_name='value',
                                                      col_type=col_type[2]))

        if general_class.upper() == 'STRUCT':
            struct_col = StructColumn(owner=None, name=col_name.lower())
            for field_name, field_type in col_type[1:]:
                struct_col.add_col(self.create_column(field_name, field_type))
            return struct_col

        general_class = self.TYPE_NAME_ALIASES.get(col_type[0].upper())

        if general_class.upper() == 'DECIMAL':
            return Column(owner=None,
                          name=col_name.lower(),
                          exact_type=get_decimal_class(int(col_type[1]),
                                                       int(col_type[2])))

        if general_class.upper() == 'CHAR':
            return Column(owner=None,
                          name=col_name.lower(),
                          exact_type=get_char_class(int(col_type[1])))

        if general_class.upper() == 'VARCHAR':
            type_size = int(col_type[1])
            if type_size <= VarChar.MAX:
                cur_type = get_varchar_class(type_size)
            else:
                cur_type = self.TYPES_BY_NAME['STRING']
            return Column(owner=None,
                          name=col_name.lower(),
                          exact_type=cur_type)

        raise Exception('unable to parse: {0}, type: {1}'.format(
            col_name, col_type))
Ejemplo n.º 2
0
def FakeColumn(name, type_, is_primary_key=False):
  """
  Return a Column, the creation of which allows the user not to have to specify the
  first argument, which is the table to which the column belongs.

  Typical use should be when creating a FakeTable, use FakeColumns as arguments.
  """
  col = Column(None, name, type_)
  col.is_primary_key = is_primary_key
  return col
Ejemplo n.º 3
0
 def test_table_model(self, cursor, hive_cursor):
     table = Table("some_test_table")
     cursor.drop_table(table.name, if_exists=True)
     table.storage_format = 'textfile'
     table.add_col(Column(table, "bigint_col", BigInt))
     table.add_col(Column(table, "string_col", String))
     cursor.create_table(table)
     try:
         other = hive_cursor.describe_table(table.name)
         assert other.name == table.name
         assert other.cols == table.cols
     finally:
         cursor.drop_table(table.name)
Ejemplo n.º 4
0
    def create_join_predicate(self, parent_table, child_table):
        for col in parent_table.cols:
            if col.name == 'id':
                parent_id_col = col
                break
        else:
            parent_id_col = Column(parent_table, 'id', BigInt)
            parent_id_col.for_flattening = True
            parent_table.add_col(parent_id_col)

        child_col_name = self.flat_collection_name(parent_table) + '_id'
        child_col = Column(None, child_col_name, BigInt)
        child_table.add_col(child_col)

        return Equals.create_from_args(parent_id_col, child_col)
Ejemplo n.º 5
0
 def _create_random_table(self, table_name, min_col_count, max_col_count,
                          allowed_storage_formats):
     '''Create and return a Table with a random number of cols.'''
     col_count = randint(min_col_count, max_col_count)
     storage_format = choice(allowed_storage_formats)
     table = Table(table_name)
     table.storage_format = storage_format
     allowed_types = list(TYPES)
     # Avro doesn't support timestamps yet.
     if table.storage_format == 'AVRO':
         allowed_types.remove(Timestamp)
     # TODO: 'table.cols' returns a copy of all scalar cols, so 'table.cols.append()'
     #       doesn't actually modify the table's columns. 'table.cols' should be changed
     #       to allow access to the real columns.
     cols = table.cols
     for col_idx in xrange(col_count):
         col_type = choice(allowed_types)
         col_type = choice(
             filter(lambda type_: issubclass(type_, col_type), EXACT_TYPES))
         if issubclass(col_type,
                       VarChar) and not issubclass(col_type, String):
             col_type = get_varchar_class(randint(1, VarChar.MAX))
         elif issubclass(col_type,
                         Char) and not issubclass(col_type, String):
             col_type = get_char_class(randint(1, Char.MAX))
         elif issubclass(col_type, Decimal):
             max_digits = randint(1, Decimal.MAX_DIGITS)
             col_type = get_decimal_class(max_digits,
                                          randint(1, max_digits))
         col = Column(
             table, '%s_col_%s' % (col_type.__name__.lower(), col_idx + 1),
             col_type)
         cols.append(col)
     table.cols = cols
     return table
Ejemplo n.º 6
0
 def create_random_table(self, table_name, min_number_of_cols,
                         max_number_of_cols, allowed_storage_formats):
     '''Create and return a Table with a random number of cols.'''
     col_count = randint(min_number_of_cols, max_number_of_cols)
     storage_format = choice(allowed_storage_formats)
     table = Table(table_name)
     table.storage_format = storage_format
     for col_idx in xrange(col_count):
         col_type = choice(TYPES)
         col_type = choice(
             filter(lambda type_: issubclass(type_, col_type), EXACT_TYPES))
         if issubclass(col_type,
                       VarChar) and not issubclass(col_type, String):
             col_type = get_varchar_class(randint(1, VarChar.MAX))
         elif issubclass(col_type,
                         Char) and not issubclass(col_type, String):
             col_type = get_char_class(randint(1, Char.MAX))
         elif issubclass(col_type, Decimal):
             max_digits = randint(1, Decimal.MAX_DIGITS)
             col_type = get_decimal_class(max_digits,
                                          randint(1, max_digits))
         col = Column(
             table, '%s_col_%s' % (col_type.__name__.lower(), col_idx + 1),
             col_type)
         table.cols.append(col)
     return table
def test_hive_create_equality_only_joins():
  """
  Tests that QueryGenerator produces a join condition with only equality functions if the
  HiveProfile is used.
  """

  class FakeHiveQueryProfile(HiveProfile):
    """
    A fake QueryProfile that extends the HiveProfile, various weights are modified in
    order to ensure that this test is deterministic.
    """

    def choose_join_condition_count(self):
      """
      There should be only one operator in the JOIN condition
      """
      return 1

    def choose_conjunct_disjunct_fill_ratio(self):
      """
      There should be no AND or OR operators
      """
      return 0

    def choose_relational_func_fill_ratio(self):
      """
      Force all operators to be relational
      """
      return 1

  query_generator = QueryGenerator(FakeHiveQueryProfile())

  # Create two tables that have one joinable Column
  right_table_expr_list = TableExprList()
  right_table = Table("right_table")
  right_table.add_col(Column("right_table", "right_col", Int))
  right_table_expr_list.append(right_table)

  left_table_expr_list = TableExprList()
  left_table = Table("left_table")
  left_table.add_col(Column("left_table", "left_col", Int))
  left_table_expr_list.append(left_table)

  # Validate the root predicate is an Equals funcs
  assert isinstance(query_generator._create_relational_join_condition(
    right_table_expr_list, left_table_expr_list), Equals)
Ejemplo n.º 8
0
def test_use_nested_width_subquery():
  """
  Tests that setting DefaultProfile.use_nested_with to False works properly. Setting this
  method to return False should prevent a WITH clause from being used inside a sub-query.
  """

  class MockQueryProfile(DefaultProfile):
    """
    A mock QueryProfile that sets use_nested_with to False and forces the
    QueryGenerator to created nested queries.
    """

    def __init__(self):
      super(MockQueryProfile, self).__init__()

      # Force the QueryGenerator to create nested queries
      self._bounds['MAX_NESTED_QUERY_COUNT'] = (4, 4)

      # Force the QueryGenerator to use WITH clauses whenever possible
      self._probabilities['OPTIONAL_QUERY_CLAUSES']['WITH'] = 1

      # Force the QueryGenerator to create inline views whenever possible
      self._probabilities['MISC']['INLINE_VIEW'] = 1

    def use_nested_with(self):
      return False

  mock_query_gen = QueryGenerator(MockQueryProfile())

  # Create two tables
  table_expr_list = TableExprList()

  right_table = Table("right_table")
  right_table.add_col(Column("right_table", "right_col", Int))
  table_expr_list.append(right_table)

  left_table = Table("left_table")
  left_table.add_col(Column("left_table", "left_col", Int))
  table_expr_list.append(left_table)

  # Check that each nested_query doesn't have a with clause
  for nested_query in mock_query_gen.generate_statement(table_expr_list).nested_queries:
    assert nested_query.with_clause is None
Ejemplo n.º 9
0
 def describe_table(self, table_name):
   '''Return a Table with table and col names always in lowercase.'''
   rows = self.execute_and_fetchall(self.make_describe_table_sql(table_name))
   table = Table(table_name.lower())
   for row in rows:
     col_name, data_type = row[:2]
     if data_type == 'tinyint(1)':
       # Just assume this is a boolean...
       data_type = 'boolean'
     if 'decimal' not in data_type and '(' in data_type:
       # Strip the size of the data type
       data_type = data_type[:data_type.index('(')]
     table.cols.append(Column(table, col_name.lower(), self.parse_data_type(data_type)))
   return table
Ejemplo n.º 10
0
 def describe_table(self, table_name):
   '''Return a Table with table and col names always in lowercase.'''
   rows = self.execute_and_fetchall(self.make_describe_table_sql(table_name))
   table = Table(table_name.lower())
   for row in rows:
     col_name, data_type = row[:2]
     match = self.SQL_TYPE_PATTERN.match(data_type)
     if not match:
       raise Exception('Unexpected data type format: %s' % data_type)
     type_name = self.TYPE_NAME_ALIASES.get(match.group(1).upper())
     if not type_name:
       raise Exception('Unknown data type: ' + match.group(1))
     if len(match.groups()) > 1 and match.group(2) is not None:
       type_size = [int(size) for size in match.group(2)[1:-1].split(',')]
     else:
       type_size = None
     table.cols.append(
         Column(table, col_name.lower(), self.parse_data_type(type_name, type_size)))
   self.load_unique_col_metadata(table)
   return table
Ejemplo n.º 11
0
 def cols(self):
     return ValExprList(
         Column(self, item.name, item.type)
         for item in self.query.select_clause.items)