Ejemplo n.º 1
0
    def test_PC_nd(self, mascaret_data):
        space_ = copy.deepcopy(mascaret_data.space)
        space_.max_points_nb = 1000
        sample = space_.sampling(1000, 'halton')
        surrogate = PC(distributions=mascaret_data.dists, sample=sample, degree=10,
                       strategy='LS')
        input_ = surrogate.sample
        output = mascaret_data.func(input_)
        surrogate.fit(input_, output)
        pred = np.array(surrogate.evaluate(mascaret_data.point)).reshape(-1)
        npt.assert_almost_equal(mascaret_data.target_point, pred, decimal=1)

        surrogate = PC(distributions=mascaret_data.dists, degree=5,
                       strategy='Quad')
        input_ = surrogate.sample
        output = mascaret_data.func(input_)
        surrogate.fit(input_, output)

        # Compute predictivity coefficient Q2
        q2 = sklearn_q2(mascaret_data.dists, mascaret_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(1, 0.1)

        surrogate = PC(distributions=mascaret_data.dists, degree=10,
                       sample=sample,
                       strategy='SparseLS')
        input_ = surrogate.sample
        output = mascaret_data.func(input_)
        surrogate.fit(input_, output)

        # Compute predictivity coefficient Q2
        q2 = sklearn_q2(mascaret_data.dists, mascaret_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(1, 0.1)
Ejemplo n.º 2
0
    def test_GP_1d(self, ishigami_data):
        surrogate = Kriging(ishigami_data.space, ishigami_data.target_space)

        # Test one point evaluation
        pred, _ = np.array(surrogate.evaluate(ishigami_data.point))
        assert pred == pytest.approx(ishigami_data.target_point, 0.2)

        # Compute predictivity coefficient Q2
        def wrap_surrogate(x):
            evaluation, _ = surrogate.evaluate(x)
            return evaluation
        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, wrap_surrogate)
        assert q2 == pytest.approx(1, 0.1)

        # Kernel and noise
        surrogate = Kriging(ishigami_data.space, ishigami_data.target_space,
                            kernel=Matern(), noise=0.8)

        surrogate = Kriging(ishigami_data.space, ishigami_data.target_space,
                            kernel=Matern(), noise=True)

        # Optimizer
        surrogate = Kriging(ishigami_data.space, ishigami_data.target_space,
                            global_optimizer=False)
        pred, _ = np.array(surrogate.evaluate(ishigami_data.point))
        assert pred == pytest.approx(ishigami_data.target_point, 0.2)
Ejemplo n.º 3
0
    def test_sk_regressors_nd(self, mascaret_data):
        regressor = 'RandomForestRegressor()'
        surrogate = SklearnRegressor(mascaret_data.space, mascaret_data.target_space,
                                     regressor)

        q2 = sklearn_q2(mascaret_data.dists, mascaret_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(0.77, 0.2)
Ejemplo n.º 4
0
    def test_PC_1d(self, ishigami_data):
        space_ = copy.deepcopy(ishigami_data.space)
        space_.max_points_nb = 2000
        sample = space_.sampling(2000, 'halton')
        surrogate = PC(distributions=ishigami_data.dists, sample=sample, degree=10,
                       strategy='LS', stieltjes=False)
        input_ = surrogate.sample
        assert len(input_) == 2000
        output = ishigami_data.func(input_)
        surrogate.fit(input_, output)
        pred = np.array(surrogate.evaluate(ishigami_data.point))
        assert pred == pytest.approx(ishigami_data.target_point, 0.1)

        # Compute predictivity coefficient Q2
        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(1, 0.1)

        surrogate = PC(distributions=ishigami_data.dists, degree=10,
                       strategy='Quad')
        input_ = surrogate.sample
        assert len(input_) == 1331
        output = ishigami_data.func(input_)
        surrogate.fit(input_, output)

        # Compute predictivity coefficient Q2
        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(1, 0.2)

        surrogate = PC(distributions=ishigami_data.dists, degree=10, sample=sample,
                       sparse_param={"max_considered_terms": 130,
                                     "most_significant": 30,
                                     "significance_factor": 5e-5},
                       strategy='SparseLS')
        input_ = surrogate.sample
        assert len(input_) == 2000
        output = ishigami_data.func(input_)
        surrogate.fit(input_, output)

        # Compute predictivity coefficient Q2
        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(1, 0.2)
Ejemplo n.º 5
0
def test_evofusion(mufi_data):
    f_e, f_c = mufi_data.func
    surrogate = Evofusion(mufi_data.space, mufi_data.target_space)

    # Test one point evaluation
    pred, _ = np.array(surrogate.evaluate(mufi_data.point))
    assert pred == pytest.approx(mufi_data.target_point, 0.1)

    # Compute predictivity coefficient Q2
    def wrap_surrogate(x):
        evaluation, _ = surrogate.evaluate(x)
        return evaluation
    q2 = sklearn_q2(mufi_data.dists, f_e, wrap_surrogate)
    assert q2 == pytest.approx(1, 0.1)
Ejemplo n.º 6
0
def test_no_pod(ishigami_data, tmp, settings_ishigami):
    test_settings = copy.deepcopy(settings_ishigami)
    test_settings.pop('pod')
    driver = Driver(test_settings, tmp)
    driver.sampling()

    pred, _ = driver.prediction(write=True, points=ishigami_data.point)
    assert pred == pytest.approx(ishigami_data.target_point, 0.2)
    assert os.path.isdir(os.path.join(tmp, 'predictions'))

    def wrap_surrogate(x):
        evaluation, _ = driver.prediction(points=x)
        return evaluation

    q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, wrap_surrogate)
    assert q2 == pytest.approx(1, 0.1)
Ejemplo n.º 7
0
    def test_GP_nd(self, mascaret_data):
        # Scaling as class SurrogateModel does it
        scaler = preprocessing.MinMaxScaler()
        scaler.fit(np.array(mascaret_data.space.corners))
        space_scaled = scaler.transform(mascaret_data.space)

        surrogate = Kriging(space_scaled, mascaret_data.target_space,
                            kernel=Matern())

        surrogate = Kriging(space_scaled, mascaret_data.target_space)

        # Compute predictivity coefficient Q2
        def wrap_surrogate(x):
            x_scaled = scaler.transform(x)
            evaluation, _ = surrogate.evaluate(x_scaled)
            return evaluation
        q2 = sklearn_q2(mascaret_data.dists, mascaret_data.func, wrap_surrogate)
        assert q2 == pytest.approx(1, 0.1)
Ejemplo n.º 8
0
    def test_RBFnet_1d(self, ishigami_data):
        surrogate = RBFnet(ishigami_data.space, ishigami_data.target_space)

        # Test one point evaluation
        pred = np.array(surrogate.evaluate(ishigami_data.point))
        assert pred == pytest.approx(ishigami_data.target_point, 0.3)

        # Test space evaluation
        pred = np.array(surrogate.evaluate(ishigami_data.space))
        npt.assert_almost_equal(ishigami_data.target_space, pred, decimal=1)

        # Compute predictivity coefficient Q2
        def wrap_surrogate(x):
            evaluation = surrogate.evaluate(x)
            return evaluation
        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, wrap_surrogate)
        assert q2 == pytest.approx(0.86, 0.1)

        surrogate = RBFnet(ishigami_data.space, ishigami_data.target_space, regtree=1)
Ejemplo n.º 9
0
    def test_sk_regressors_1d(self, ishigami_data):
        # From an object
        l_scale = (1.0,) * 3
        scale_bounds = [(0.01, 100)] * 3
        kernel = ConstantKernel() * Matern(length_scale=l_scale,
                                           length_scale_bounds=scale_bounds)

        regressor = GaussianProcessRegressor(kernel=kernel, normalize_y=True)
        surrogate = SklearnRegressor(ishigami_data.space, ishigami_data.target_space,
                                     regressor)

        # Test space evaluation
        pred = np.array(surrogate.evaluate(ishigami_data.space))
        npt.assert_almost_equal(ishigami_data.target_space, pred, decimal=1)

        # From a str
        regressor = 'RandomForestRegressor()'
        surrogate = SklearnRegressor(ishigami_data.space, ishigami_data.target_space,
                                     regressor)

        q2 = sklearn_q2(ishigami_data.dists, ishigami_data.func, surrogate.evaluate)
        assert q2 == pytest.approx(0.77, 0.2)