Ejemplo n.º 1
0
    def test_compare_particle_shape(self):
        models = [
            pybamm.lithium_ion.SPM({"particle shape": "spherical"},
                                   name="spherical"),
            pybamm.lithium_ion.SPM({"particle shape": "user"}, name="user"),
        ]
        params = [
            models[0].default_parameter_values,
            models[0].default_parameter_values,
        ]

        # set same mesh for all models
        var = pybamm.standard_spatial_vars
        var_pts = {var.x_n: 5, var.x_s: 5, var.x_p: 5, var.r_n: 5, var.r_p: 5}

        for model, param in zip(models, params):
            if model.name == "user":
                R_n = param["Negative particle radius [m]"]
                R_p = param["Positive particle radius [m]"]
                eps_s_n = param[
                    "Negative electrode active material volume fraction"]
                eps_s_p = param[
                    "Positive electrode active material volume fraction"]

                param.update(
                    {
                        "Negative electrode surface area to volume ratio [m-1]":
                        3 * eps_s_n / R_n,
                        "Positive electrode surface area to volume ratio [m-1]":
                        3 * eps_s_p / R_p,
                        "Negative surface area per unit volume distribution in x":
                        1,
                        "Positive surface area per unit volume distribution in x":
                        1,
                    },
                    check_already_exists=False,
                )

            param.process_model(model)
            geometry = model.default_geometry
            param.process_geometry(geometry)
            mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts)
            disc = pybamm.Discretisation(mesh, model.default_spatial_methods)
            disc.process_model(model)

        # solve model
        solutions = []
        t_eval = np.linspace(0, 3600, 100)
        for model in models:
            solution = pybamm.CasadiSolver().solve(model, t_eval)
            solutions.append(solution)

        # compare outputs
        comparison = StandardOutputComparison(solutions)
        comparison.test_all(skip_first_timestep=True)
Ejemplo n.º 2
0
    def test_compare_outputs_thermal(self):
        # load models - for the default params we expect x-full and lumped to
        # agree as the temperature is practically independent of x
        options = [{"thermal": opt} for opt in ["lumped", "x-full"]]
        model_combos = [
            ([pybamm.lithium_ion.SPM(opt) for opt in options]),
            ([pybamm.lithium_ion.SPMe(opt) for opt in options]),
            ([pybamm.lithium_ion.DFN(opt) for opt in options]),
        ]

        for models in model_combos:
            # load parameter values (same for all models)
            param = models[0].default_parameter_values

            # for x-full, cooling is only implemented on the surfaces
            # so set other forms of cooling to zero for comparison.
            param.update(
                {
                    "Negative current collector"
                    + " surface heat transfer coefficient [W.m-2.K-1]": 5,
                    "Positive current collector"
                    + " surface heat transfer coefficient [W.m-2.K-1]": 5,
                    "Negative tab heat transfer coefficient [W.m-2.K-1]": 0,
                    "Positive tab heat transfer coefficient [W.m-2.K-1]": 0,
                    "Edge heat transfer coefficient [W.m-2.K-1]": 0,
                }
            )
            for model in models:
                param.process_model(model)

            # set mesh
            var = pybamm.standard_spatial_vars
            var_pts = {var.x_n: 5, var.x_s: 5, var.x_p: 5, var.r_n: 5, var.r_p: 5}

            # discretise models
            discs = {}
            for model in models:
                geometry = model.default_geometry
                param.process_geometry(geometry)
                mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts)
                disc = pybamm.Discretisation(mesh, model.default_spatial_methods)
                disc.process_model(model)
                discs[model] = disc

            # solve model
            solutions = []
            t_eval = np.linspace(0, 3600, 100)
            for model in models:
                solution = pybamm.CasadiSolver().solve(model, t_eval)
                solutions.append(solution)

            # compare outputs
            comparison = StandardOutputComparison(solutions)
            comparison.test_all(skip_first_timestep=True)
Ejemplo n.º 3
0
    def test_compare_outputs_surface_form(self):
        # load models
        options = [{
            "surface form": cap
        } for cap in [False, "differential", "algebraic"]]
        model_combos = [
            ([pybamm.lithium_ion.SPM(opt) for opt in options]),
            ([pybamm.lithium_ion.SPMe(opt) for opt in options]),
            ([pybamm.lithium_ion.DFN(opt) for opt in options]),
        ]

        for models in model_combos:
            # load parameter values (same for all models)
            param = models[0].default_parameter_values
            param.update({"Current function [A]": 1})
            for model in models:
                param.process_model(model)

            # set mesh
            var = pybamm.standard_spatial_vars
            var_pts = {
                var.x_n: 5,
                var.x_s: 5,
                var.x_p: 5,
                var.r_n: 5,
                var.r_p: 5
            }

            # discretise models
            discs = {}
            for model in models:
                geometry = model.default_geometry
                param.process_geometry(geometry)
                mesh = pybamm.Mesh(geometry, model.default_submesh_types,
                                   var_pts)
                disc = pybamm.Discretisation(mesh,
                                             model.default_spatial_methods)
                disc.process_model(model)
                discs[model] = disc

            # solve model
            solutions = []
            t_eval = np.linspace(0, 3600, 100)
            for model in models:
                solution = pybamm.CasadiSolver().solve(model, t_eval)
                solutions.append(solution)

            # compare outputs
            comparison = StandardOutputComparison(solutions)
            comparison.test_all(skip_first_timestep=True)
Ejemplo n.º 4
0
    def test_compare_outputs_capacitance(self):
        """
        Check that the leading-order model solution converges linearly in C_e to the
        full model solution
        """
        # load models
        options = [{
            "surface form": cap
        } for cap in [False, "differential", "algebraic"]]
        model_combos = [
            ([pybamm.lead_acid.LOQS(opt) for opt in options]),
            ([pybamm.lead_acid.Full(opt) for opt in options]),
        ]

        for models in model_combos:
            # load parameter values (same for all models)
            param = models[0].default_parameter_values
            param.update({"Typical current [A]": 1})
            for model in models:
                param.process_model(model)

            # set mesh
            var = pybamm.standard_spatial_vars
            var_pts = {var.x_n: 5, var.x_s: 5, var.x_p: 5}

            # discretise models
            discs = {}
            for model in models:
                geometry = model.default_geometry
                param.process_geometry(geometry)
                mesh = pybamm.Mesh(geometry, model.default_submesh_types,
                                   var_pts)
                disc = pybamm.Discretisation(mesh,
                                             model.default_spatial_methods)
                disc.process_model(model)
                discs[model] = disc

            # solve model
            solutions = {}
            t_eval = np.linspace(0, 1, 100)
            for i, model in enumerate(models):
                solution = model.default_solver.solve(model, t_eval)
                solutions[model] = solution

            # compare outputs
            comparison = StandardOutputComparison(models, discs, solutions)
            comparison.test_all(skip_first_timestep=True)
Ejemplo n.º 5
0
    def test_compare_averages_asymptotics(self):
        """
        Check that the average value of certain variables is constant across submodels
        """
        # load models
        models = [
            pybamm.lead_acid.LOQS(),
            pybamm.lead_acid.Composite(),
            pybamm.lead_acid.Full(),
        ]

        # load parameter values (same for all models)
        param = models[0].default_parameter_values
        param.update({"Typical current [A]": 1})
        for model in models:
            param.process_model(model)

        # set mesh
        var = pybamm.standard_spatial_vars
        var_pts = {var.x_n: 10, var.x_s: 10, var.x_p: 10}

        # discretise models
        discs = {}
        for model in models:
            geometry = model.default_geometry
            param.process_geometry(geometry)
            mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts)
            disc = pybamm.Discretisation(mesh, model.default_spatial_methods)
            disc.process_model(model)
            discs[model] = disc

        # solve model
        solutions = {}
        t_eval = np.linspace(0, 1, 100)
        for i, model in enumerate(models):
            solution = model.default_solver.solve(model, t_eval)
            solutions[model] = solution

        # test averages
        comparison = StandardOutputComparison(models, discs, solutions)
        comparison.test_averages()
Ejemplo n.º 6
0
    def test_compare_averages_asymptotics(self):
        """
        Check that the average value of certain variables is constant across submodels
        """
        # load models
        models = [
            pybamm.lead_acid.LOQS(),
            pybamm.lead_acid.Composite(),
            pybamm.lead_acid.Full(),
        ]

        # load parameter values (same for all models)
        param = models[0].default_parameter_values
        param.update({"Current function [A]": 1})
        for model in models:
            param.process_model(model)

        # set mesh
        var = pybamm.standard_spatial_vars
        var_pts = {var.x_n: 10, var.x_s: 10, var.x_p: 10}

        # discretise models
        for model in models:
            geometry = model.default_geometry
            param.process_geometry(geometry)
            mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts)
            disc = pybamm.Discretisation(mesh, model.default_spatial_methods)
            disc.process_model(model)

        # solve model
        solutions = []
        t_eval = np.linspace(0, 3600 * 17, 100)
        for model in models:
            solution = pybamm.CasadiSolver().solve(model, t_eval)
            solutions.append(solution)

        # test averages
        comparison = StandardOutputComparison(solutions)
        comparison.test_averages()