def test_pure_diffusion_3d(ics_pure_diffusion):
    """Test ics_pure_diffusion with fixed step methods"""

    neuron_instance, model = ics_pure_diffusion
    h, rxd, data = neuron_instance
    dend, r, ca = model
    h.dt *= 50
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 2
0
def test_pure_diffusion_hybrid_cvode(ics_diffusion_hybrid):
    """Test ics_diffusion_hybrid with variable step methods"""

    neuron_instance, model = ics_diffusion_hybrid
    h, rxd, data = neuron_instance
    dend, r, ca = model
    h.CVode().active(True)
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 3
0
def test_soma_outlines(cell_model):
    """Import a Neurolucida model and use the soma outline for voxelization."""

    h, rxd, data, save_path, Cell = cell_model
    c = Cell()
    rxd.set_solve_type(c.all, dimension=3)
    cyt = rxd.Region(c.all, name="cyt", nrn_region="i", dx=1.0)
    ca = rxd.Species(
        cyt, initial=lambda node: 1 if node in c.soma[0] else 0, d=0.5, charge=2
    )

    h.finitialize(-65)
    h.continuerun(10)
    if not save_path:
        max_err = compare_data(data)
        assert max_err < tol
def test_pure_diffusion_3d_anisotropic_z(ics_pure_diffusion_anisotropic):
    """Test anisotropic without diffusion in the z direction with fixed step
       methods"""

    neuron_instance, make_test = ics_pure_diffusion_anisotropic
    h, rxd, data = neuron_instance
    dend, r, ca = make_test([0.1, 0.1, 0])
    h.dt *= 50
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 5
0
def test_pure_diffusion_3d_anisotropic_z_inhom(ics_pure_diffusion_anisotropic):
    """Test inhomogeneous anisotropic diffusion without diffusion in the z 
       direction with fixed step methods"""

    neuron_instance, make_test = ics_pure_diffusion_anisotropic
    h, rxd, data, save_path = neuron_instance
    dend, r, ca = make_test(lambda nd, dr: 0 if dr == 2 else 0.1)
    h.dt *= 50
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    if not save_path: assert loss < tol
    max_err = compare_data(data)
    if not save_path: assert max_err < tol
Ejemplo n.º 6
0
def test_empty_region_multicompartment_reaction(empty_regions_model):
    """Test a reaction that should change the ECS with an empty region"""

    neuron_instance, model = empty_regions_model
    h, rxd, data = neuron_instance
    sec, cyt, mem, ecs, k = model
    kcyt, kecs = k[cyt], k[ecs]
    react = rxd.MultiCompartmentReaction(kcyt,
                                         kecs,
                                         1e5,
                                         0,
                                         membrane=mem,
                                         membrane_flux=False)
    h.finitialize(-70)
    h.continuerun(10)
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 7
0
def test_pure_diffusion_3d_anisotropic_x_cvode(ics_pure_diffusion_anisotropic):
    """Test anisotropic without diffusion in the x direction with variable step
       methods"""

    neuron_instance, make_test = ics_pure_diffusion_anisotropic
    h, rxd, data, save_path = neuron_instance
    dend, r, ca = make_test([0, 0.1, 0.1])
    h.CVode().active(True)
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    if not save_path: assert loss < tol
    max_err = compare_data(data)
    if not save_path: assert max_err < tol
Ejemplo n.º 8
0
def test_soma_move(cell_model):
    """Import a Neurolucida model and move it."""

    h, rxd, data, save_path, Cell = cell_model
    c = Cell(shift=(20, 10, 20))
    rxd.set_solve_type(c.all, dimension=3)
    cyt = rxd.Region(c.all, name="cyt", nrn_region="i", dx=1.0)
    ca = rxd.Species(
        cyt, initial=lambda node: 1 if node in c.soma[0] else 0, d=0.5, charge=2
    )

    h.finitialize(-65)
    h.continuerun(10)
    assert min([nd.x3d for nd in ca.nodes(c.soma[0])]) > 29
    if not save_path:
        max_err = compare_data(data)
        assert max_err < tol
Ejemplo n.º 9
0
def test_pure_diffusion_3d_cvode(ics_pure_diffusion):
    """Test ics_pure_diffusion with variable step methods"""

    neuron_instance, model = ics_pure_diffusion
    h, rxd, data, save_path = neuron_instance
    dend, r, ca = model
    h.CVode().active(True)
    vec = h.Vector()
    h.CVode().states(vec)
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    if not save_path: assert loss < tol
    max_err = compare_data(data)
    if not save_path: assert max_err < tol
def test_pure_diffusion_3d_anisotropic_y_inhom_cvode(
        ics_pure_diffusion_anisotropic):
    """Test inhomogeneous anisotropic diffusion without diffusion in the y 
       direction with variable step methods"""

    neuron_instance, make_test = ics_pure_diffusion_anisotropic
    h, rxd, data = neuron_instance
    dend, r, ca = make_test(lambda nd, dr: 0 if dr == 1 else 0.1)
    h.CVode().active(True)
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 11
0
def test_pure_diffusion_3d_inhom_cvode(ics_pure_diffusion):
    """Test ics_pure_diffusion with variable step methods and inhomogeneous
       diffusion coefficients.
    """
    neuron_instance, model = ics_pure_diffusion
    h, rxd, data = neuron_instance
    dend, r, ca = model
    h.CVode().active(True)
    for nd in ca.nodes:
        if nd.x >= 0.5:
            nd.d = 0
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 12
0
def test_pure_diffusion_3d_cvode(ics_pure_diffusion):
    """Test ics_pure_diffusion with variable step methods"""

    neuron_instance, model = ics_pure_diffusion
    h, rxd, data = neuron_instance
    dend, r, ca = model
    h.CVode().active(True)
    vec = h.Vector()
    h.CVode().states(vec)
    print(vec.size())
    h.finitialize(-65)
    print(vec.size(), vec.min(), vec.max(), vec.mean())
    print(list(ca._intracellular_instances.values())[0]._grid_id)
    loss = -(numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    assert loss < tol
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 13
0
def test_pure_diffusion_hybrid_small_grid(ics_diffusion_hybrid):
    """Test ics_diffusion_hybrid with fixed step methods where 1D sections are
       outside the 3D grid
    """

    neuron_instance, model = ics_diffusion_hybrid
    h, rxd, data, save_path = neuron_instance
    dend, r, ca = model
    dend[1].diam = 0.75

    h.dt *= 50
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) * numpy.array(ca.nodes.volume)).sum()
    if not save_path:
        assert loss < tol
        max_err = compare_data(data)
        assert max_err < tol
Ejemplo n.º 14
0
def test_ecs_diffusion_3d_tort_state(ecs_diffusion):
    neuron_instance, make_model = ecs_diffusion
    ecs, k = make_model(11,
                        11,
                        11,
                        0.2,
                        None,
                        perm={
                            "name": "permeability",
                            "initial": 0
                        })
    h, rxd, data, save_path = neuron_instance
    for nd in ecs.permeability.nodes:
        nd.value = 100 / (10 + (nd.x3d + nd.y3d + nd.z3d)**2)
    h.finitialize(1000)
    h.continuerun(10)
    if not save_path:
        max_err = compare_data(data)
        assert max_err < tol
Ejemplo n.º 15
0
def test_multiple_soma(cell_model):
    """Create two Neurolucida models."""

    h, rxd, data, save_path, Cell = cell_model
    c = Cell()
    c2 = Cell(shift=(20, 10, 20))
    rxd.set_solve_type(c.all, dimension=3)
    cyt = rxd.Region(c.all, name="cyt", nrn_region="i", dx=1.0)
    ca = rxd.Species(
        cyt,
        initial=lambda node: 1 if node in c.soma[0] or node in c2.soma[0] else 0,
        d=0.5,
        charge=2,
    )

    h.finitialize(-65)
    h.continuerun(10)
    if not save_path:
        max_err = compare_data(data)
        assert max_err < tol
Ejemplo n.º 16
0
def test_pure_diffusion_3d_inhom(ics_pure_diffusion):
    """Test ics_pure_diffusion with fixed step methods and inhomogeneous
       diffusion coefficients.
    """
    neuron_instance, model = ics_pure_diffusion
    h, rxd, data, save_path = neuron_instance
    dend, r, ca = model
    h.dt *= 50
    for nd in ca.nodes:
        if nd.x >= 0.5:
            nd.d = 0
    h.finitialize(-65)
    loss = -(numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    h.continuerun(125)
    loss += (numpy.array(ca.nodes.concentration) *
             numpy.array(ca.nodes.volume)).sum()
    if not save_path: assert loss < tol
    max_err = compare_data(data)
    if not save_path: assert max_err < tol
def test_multicompartment_reactions(neuron_instance):
    """A tests of mulicompartment reactions using an intracellular Ca model.

    Test based on example copied from the RxD tutorial;
    http://www.neuron.yale.edu/neuron/static/docs/rxd/index.html
    Where 1D intracellular space is divided into cytsol and endoplasmic
    reticulum. Calcium is transported between the regions by multicompartment
    reactions for a leak, SERCA pump and IP3 receptor.
    """

    h, rxd, data = neuron_instance
    sec = h.Section()
    sec.L = 100
    sec.diam = 1
    sec.nseg = 100

    h.CVode().active(1)
    h.CVode().atol(1e-4)

    caDiff = 0.016
    ip3Diff = 0.283
    cac_init = 1.0e-4
    ip3_init = 0.1
    gip3r = 12040
    gserca = 0.3913
    gleak = 6.020
    kserca = 0.1
    kip3 = 0.15
    kact = 0.4
    ip3rtau = 2000.0

    # These parameters where missing in the tutorial so arbitrary values were chosen
    # any resemblance to experimental values is purely coincidental.
    fc = 0.7
    fe = 0.3
    caCYT_init = 0.1

    cyt = rxd.Region(
        h.allsec(),
        name='cyt',
        nrn_region='i',
        geometry=rxd.FractionalVolume(fc, surface_fraction=1),
    )

    er = rxd.Region(h.allsec(),
                    name='er',
                    geometry=rxd.FractionalVolume(fe / 2.0))
    cyt_er_membrane = rxd.Region(h.allsec(),
                                 name='mem',
                                 geometry=rxd.ScalableBorder(
                                     1, on_cell_surface=False))
    ca = rxd.Species([cyt, er],
                     d=caDiff,
                     name="ca",
                     charge=2,
                     initial=caCYT_init)

    ip3 = rxd.Species(cyt, d=ip3Diff, name="ip3", initial=ip3_init)
    ip3r_gate_state = rxd.Species(cyt_er_membrane, name="gate", initial=0.8)
    h_gate = ip3r_gate_state[cyt_er_membrane]
    minf = ip3[cyt] * 1000.0 * ca[cyt] / (ip3[cyt] +
                                          kip3) / (1000.0 * ca[cyt] + kact)
    k = gip3r * (minf * h_gate)**3

    ip3r = rxd.MultiCompartmentReaction(ca[er],
                                        ca[cyt],
                                        k,
                                        k,
                                        membrane=cyt_er_membrane)

    serca = rxd.MultiCompartmentReaction(
        ca[cyt],
        ca[er],
        gserca / ((kserca / (1000.0 * ca[cyt]))**2 + 1),
        membrane=cyt_er_membrane,
        custom_dynamics=True,
    )
    leak = rxd.MultiCompartmentReaction(ca[er],
                                        ca[cyt],
                                        gleak,
                                        gleak,
                                        membrane=cyt_er_membrane)

    ip3rg = rxd.Rate(h_gate,
                     (1.0 / (1 + 1000.0 * ca[cyt] / (0.3)) - h_gate) / ip3rtau)

    h.finitialize(-65)

    cae_init = (0.0017 - cac_init * fc) / fe
    ca[er].concentration = cae_init

    for node in ip3.nodes:
        if node.x < 0.2:
            node.concentration = 2

    h.CVode().re_init()
    h.continuerun(1000)
    max_err = compare_data(data)
    assert max_err < tol
Ejemplo n.º 18
0
def test_multicompartment_reactions_aligment(neuron_instance):
    """ A test for multicompartment reactions where one regions has more
    sections than the other. 
    """

    h, rxd, data, save_path = neuron_instance

    #Dendrite and spine
    dend = h.Section(name='dend')
    dend.nseg = 101
    dend.pt3dclear()
    dend.pt3dadd(-10, 0, 0, 1)
    dend.pt3dadd(10, 0, 0, 1)

    spine = h.Section(name='spine')
    spine.nseg = 11
    spine.pt3dclear()
    spine.pt3dadd(0, 0, 0, 0.2)
    spine.pt3dadd(0, 1, 0, 0.2)
    spine.connect(dend(0.5))

    # Where -- define the shells and borders
    N = 5  # number of shells -- must be >= 2

    # Where -- shells and border between them
    shells = []
    border = []
    for i in range(N - 1):
        shells.append(
            rxd.Region([dend],
                       name='shell%i' % i,
                       geometry=rxd.Shell(float(i) / N, (1.0 + i) / N)))
        border.append(
            rxd.Region([dend],
                       name='border%i' % i,
                       geometry=rxd.FixedPerimeter(2.0 * h.PI * (1.0 + i))))

    shells.append(
        rxd.Region([dend, spine],
                   nrn_region='i',
                   name='shell%i' % (N - 1),
                   geometry=rxd.MultipleGeometry(
                       secs=[dend, spine],
                       geos=[rxd.Shell((N - 1.0) / N, 1), rxd.inside])))

    # Who -- calcium with an inhomogeneous initial condition
    Dca = 0.6  #um^2/ms

    # scale factor so the flux (Dca/dr)*Ca has units molecules/um^2/ms (where dr is the thickness of the shell)
    mM_to_mol_per_um = 6.0221409e+23 * 1e-18
    ca = rxd.Species(shells,
                     d=Dca,
                     name='ca',
                     charge=2,
                     initial=lambda nd: 1000e-6
                     if nd.segment in spine else 100e-6)

    # What -- use reactions to setup diffusion between the shells
    cas = []  # calcium on the shells
    for reg in shells:
        cas.append(ca[reg])

    # create the multi-compartment reactions between the pairs of shells
    diffusions = []
    for i in range(N - 1):
        diffusions.append(
            rxd.MultiCompartmentReaction(cas[i],
                                         cas[i + 1],
                                         mM_to_mol_per_um * Dca,
                                         mM_to_mol_per_um * Dca,
                                         border=border[i]))

    h.finitialize(-65)
    h.continuerun(2.5)
    if not save_path:
        max_err = compare_data(data)
        assert max_err < tol