def translate(sentence, to_sen='bn', to_file=False, file_name=None):
    """
    input: sentence to convert, and language to convert
    returns translated sentence
    """
    err_sentence = "Sir, I can't translate this. Make sure you have said translate when you start detecting."

    def detect(sentence):
        """
        input: sentence or string
        returns detected language
        """
        try:
            return blob.detect_language(blob(sentence))
        except Exception as e:
            print(e)
            return None

    try:
        answer = blob.detect_language(blob(sentence))
        if answer != None:
            translated = str(
                blob.translate(blob(sentence), from_lang=answer, to=to_sen))
        else:
            return err_sentence

        if to_file:
            saveFile(translated, file_name)
            print("File written on {file}".format(file=file_name))

        return translated

    except Exception as e:
        print(e)
        return err_sentence
Ejemplo n.º 2
0
    def make_textblob_object(self):

        # assigns the local attribute to the string-type converted BeautifulSoup object

        ### MUST MAKE SEPARATE METHOD FOR TEXT EXTRACTION AND STRING CONVERSION ### THIS IS MY CURRENT LOCATION TO WORK ON !!!!

        self.blob = blob(str(self.article.soup.text))
def file_translate(file, to_sen='bn', sfile="tranlated.txt"):
    """
    input: file to translate, language to translate and a file name to save file
    translated and save whole file
    """

    paragraph = ''
    print("File translating Start....")
    print("File Reading begin...")

    try:
        with open(file, 'r') as file:
            sentences = blob(file.read()).sentences
            #print(sentences)

        print("Translating: ", end='')
        progress = tqdm(total=len(sentences),
                        desc="Translating:",
                        unit="sentence/s")
        for item in sentences:
            progress.update(1)
            paragraph += translate(str(item)) + '\n'
            time.sleep(0.2)

        progress.close()
        print("\nTranslating Done! Saving your file")
        saveFile(paragraph, sfile)

    except Exception as e:
        print(e)
def comment(movie_id):
    form = Comment_Form()
    if form.validate_on_submit():
        user_id = session['user_id']
        comment_obj = blob(form.comment.data)
        rating = comment_obj.sentiment.polarity
        rating = round(rating, 1)
        if rating <= -0.7:
            rating = 1
        elif rating > -0.7 and rating <= -0.2:
            rating = 2
        elif rating > -0.2 and rating <= 0.1:
            rating = 3
        elif rating > 0.1 and rating <= 0.6:
            rating = 4
        else:
            rating = 5
        review = Reviews(comment=form.comment.data,
                         rating=rating,
                         user_id=user_id,
                         movie_id=movie_id)
        db.session.add(review)
        db.session.commit()
        avg_rating = get_avg_rating(movie_id)
        movie = Movies.query.filter_by(id=movie_id).first_or_404()
        movie.avg_rating = avg_rating
        db.session.commit()
        return redirect(url_for('home.movie', movie_id=movie_id))
def sentiment():
    with open('my.txt') as t:
        a = t.read()
    tb = blob(
        a)  # textblob is a string which works like natural language processing
    c = str(tb.sentiment)  # here we are extracting sentiment from the string
    with open('sentiment.txt', 'w') as s:
        s.write(c)
 def detect(sentence):
     """
     input: sentence or string
     returns detected language
     """
     try:
         return blob.detect_language(blob(sentence))
     except Exception as e:
         print(e)
         return None
Ejemplo n.º 7
0
    def textblob_sentiment_analysis(self):

        ### this adds the overall article sentiment to index 0 ###
        self.sentiment.append(self.blob.sentiment)

        # this loop iterates over each line within the article and assigns it a sentiment value
        # it then adds those individual values to the empty sentiment list
        for sentences in self.blob.split(
                "."
        ):  # this function call results in a list consisting of strings separated
            # by a period
            sentence_sentiment = blob(sentences).sentiment
            self.sentiment.append(sentence_sentiment)
Ejemplo n.º 8
0
def getsentiment(text):
    '''
    Take input as text and Return Sentimental
    '''
    tb=blob(text)
    result=tb.sentiment
    polarity=result.polarity
    print({'polarity':polarity,'text':text})
    if polarity==0:
        return "Neutral"
    elif polarity>0:
        return "Positive"
    else:
        return "Negative"
Ejemplo n.º 9
0
def handleFileUpload():
    extra_line = ''
    if request.method == "POST":
        if "file" not in request.files:
            flash("No file part")
            return redirect(request.url)

        file = request.files["file"]

        if file.filename == '':
            flash("No selected file")
            return redirect(request.url)

        if file:
            recognizer = sr.Recognizer()
            audio_file = sr.AudioFile(file)
            with audio_file as source:
                audio_data = recognizer.record(source)
                text = recognizer.recognize_google(audio_data, show_all=False)
                tb = blob(str(text))
                tb_text = tb.sentiment
                if tb_text[0] > 0:
                    a = 'Positive'

                elif tb_text[0] < 0:
                    a = 'Negative'

                else:
                    a = 'Neutral'

                extra_line = str(text) + ":   " + str(tb_text) + ":   " + a

        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config["UPLOAD_FOLDER"], filename)
        file.save(filepath)
        extra_line += f"<br>File saved to {filepath}"

    #return redirect(url_for('fileFrontPage'))
    return render_template(
        'index.html',
        prediction_text='Voice to Text: {} \n'.format(extra_line))
Ejemplo n.º 10
0
Original file is located at
    https://colab.research.google.com/drive/1gvA21zINvGSUN4ieDfbxhD0FfAQg1RdE
"""

!pip install textblob

import nltk

nltk.download('punkt')

nltk.download("averaged_perceptron_tagger")

from textblob import TextBlob as blob

tb=blob("Am unhappy ")

tb.sentiment

tb.tags

!pip install SpeechRecognition

!apt install libasound2-dev portaudio19-dev libportaudio2 libportaudiocpp0 ffmpeg

!pip install pyaudio

import speech_recognition as sr

t=sr.Recognizer()
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ip",
                        default="127.0.0.1",
                        help="The ip of the OSC server")
    parser.add_argument("--port",
                        type=int,
                        default=12000,
                        help="The port the OSC server is listening on")
    args = parser.parse_args()

    client = udp_client.SimpleUDPClient(args.ip, args.port)

##create an object from the text blob
##text blob contains information about Part of Speech tagging
tb = blob('Hi, here is my sentiment analysis of speech!')

##object of the speech recognition
r = sr.Recognizer()

iter_num = 10
index = 0
##the loop below is running 10 times
while (index < iter_num):
    with sr.Microphone() as source:
        print('Say Something')
        ##if there is no sound for 5 seconds, it will stop recording and move on
        ##to the next speech message
        audio = r.listen(source, timeout=5)

        try:
Ejemplo n.º 12
0
        elif "whatsapp to friend" in query:
            driver = webdriver.Chrome('C:\\Users\\DANISH\\PycharmProject\\Examples\\venv\\Lib\\site-packages\\selenium\\webdriver\\chrome\\chromedriver.exe')
            driver.get('https://web.whatsapp.com/')
            time.sleep(15)
            sender_name = input("Enter the name to whom you want to send message: ")
            user = driver.find_element_by_xpath('//span[@title="{}"]'.format(sender_name))
            user.click()
            message = input("Enter th message: ")
            mess_box = driver.find_element_by_class_name("_3u328 copyable-text selectable-text")
            mess_box.click()
            mess_box.send_keys(message)
            button = driver.find_element_by_class_name('_3M-N-')
            button.click()
            speak('message sent successfully')


        elif 'run sentiment analysis' in query:
            speak('running the sentiment analysis')
            for _ in range(10):
                data = takeCommand()
                tb = blob(data)
                a = tb.sentiment
                print(a)
                speak(a)

        elif 'terminate' in query:
            speak("Thanks for using my service. happy to help you")
            break


Ejemplo n.º 13
0
nouns = []  #empty to array to hold all nouns

#select nouns froms the sentences
for sentence in sentences:
    for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):
        if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS'):
            nouns.append(word)
#stemming the nouns
p_stemmer = PorterStemmer()
nouns = [p_stemmer.stem(i) for i in nouns]
nouns = set(nouns)
nouns = list(nouns)
print(nouns)

#creating textblobs
stu1 = blob(doc_a)
stu2 = blob(doc_b)
stu3 = blob(doc_c)
stu4 = blob(doc_d)
stu5 = blob(doc_e)

#creating a list of textblobs
blob_set = [stu1, stu2, stu3, stu4, stu5]

#creating the opinion list
opinion = [0] * len(nouns)
for i in range(0, len(nouns)):
    opinion[i] = 0
    for j in blob_set:
        if nouns[i] in j:
            opinion[i] += j.sentiment[0]