Ejemplo n.º 1
0
def ActiveListening(this):
    threshold = None
    textout.SystemPrint("Started to listen actively")
    #RECORD A WAV FILE, CUTOFF AT 12s OR FALLS BELOW THRESHOLD
    #SEND TO WITAI
    #RECIEVE INPUT
    #SEND TO PROCESSOR AND RETURN INTENT
    #FIND ACTION.

    RATE = 16000
    CHUNK = 1024

    p = pyaudio.PyAudio()
    stream = p.open(format=pyaudio.paInt16,
                    channels=1,
                    rate=RATE,
                    input=True,
                    frames_per_buffer=CHUNK)

    frames = []

    lastN = [
        144 * 1.2 for i in range(15)
    ]  #changing array length will determine if average will change faster or not

    for i in range(0, int(RATE / CHUNK *
                          5)):  #RATE(16000) / CHUNK(1024) * TIME (12s)

        data = stream.read(CHUNK)
        frames.append(data)
        score = getScore(data)

        lastN.pop(0)
        lastN.append(score)
        average = sum(lastN) / float(len(lastN))
        print(str(average))

        if average < 144 - 20:
            textout.SystemPrint("Listening stopped, below threshold.")
            break

    textout.SystemPrint("Listening Timeout!")
    stream.stop_stream()
    stream.close()
    p.terminate()

    with tempfile.NamedTemporaryFile(mode='w+b') as f:
        wav_fp = wave.open(f, 'wb')
        wav_fp.setnchannels(1)
        wav_fp.setsampwidth(pyaudio.get_sample_size(pyaudio.paInt16))
        wav_fp.setframerate(16000)
        wav_fp.writeframes(b''.join(frames))
        wav_fp.close()
        f.seek(0)
        transcriber.TranscribeAudiofile(this, f)

    textout.SystemPrint("Stopped listening actively")
Ejemplo n.º 2
0
    def __init__(this):
        textout.SystemPrint("Processor: Starting processor initialization" )
        this.data = dataimporter.DataImporter()
        this.data.PopulateTrainingData()
        this.outlines = this.data.PopulateOutlinesDict()
        this.synonyms = this.data.PopulateSynonymsDict()
        this.entities = this.data.PopulateEntitiesDict()
        
        this.LoadAllModules()

        textout.SystemPrint ("Processor: Processor initialized!\n")
Ejemplo n.º 3
0
    def PopulateTrainingData(this):
        textout.SystemPrint("DataImporter: Loading Training Data...")

        textout.SystemPrint("DataImporter: Reading disk training data")
        if os.path.exists(TRAIN_PATH):
            with open(TRAIN_PATH, 'r') as fp:
                this.trainingdata = json.load(fp)
            textout.SystemPrint("DataImporter: Training data loaded!")
        else:
            textout.SystemPrint(
                "DataImporter: NOTICE! Disk training data is not found. Creating blank training data file."
            )
Ejemplo n.º 4
0
    def LoadAllModules(this):
        textout.SystemPrint ("Module Loader: Loading all modules into processor instance...")

        locations = [MOD_PATH]

        for finder, name, ispkg in pkgutil.walk_packages(locations):
            try:
                loader = finder.find_module(name)
                mod = loader.load_module(name)
            except:
                textout.SystemPrint ("Skipped module '" + name + "' due to an error.")
            else:
                textout.SystemPrint ("Found module '" + name + "'")
                this.modules.append(mod)

        textout.SystemPrint ("{} modules(s) loaded".format(len(this.modules)))
Ejemplo n.º 5
0
    def UpdateTrainingData(this, phrases, phrasePos, usrinputlength, outlines):
        #Try to add data into the trainingdata dict, from processor.py when a match is found.

        #need to convert:
        #[phrases] >> _outlineKey (string)
        #[phrasePos] >> [phrasePosDiff]

        #need to convert [phrases] into one single string
        _outlineKey = this.CombineStringsList(phrases)

        phrasePosDiff = [
            0,
        ] * len(phrasePos)
        #need to convert [phrasePos] >> [phrasePosDiff]
        for i in range(1, len(
                phrasePos)):  #index 0 is always value 0, so start loop from 1.
            phrasePosDiff[i] = phrasePos[i] - phrasePos[i - 1]

        #Make _data
        _data = [phrasePosDiff, usrinputlength]

        #_data is in this format: ([phrasePosDiff], usrinputlength)
        if _outlineKey in this.trainingdata:
            if _data not in this.trainingdata[
                    _outlineKey]:  #Add data if OUTLINE exists and _data is not in dict yet
                textout.SystemPrint(
                    "DataImporter/UpdateTrainingData(): Data does not exist, adding!"
                )
                this.trainingdata[_outlineKey].append(_data)
                this.WriteTrainingData()
                this.UpdateOutlinesWithTrainingData(outlines)
            else:
                textout.SystemPrint(
                    "DataImporter/UpdateTrainingData(): Data already exists.")
        else:
            textout.SystemPrint(
                "DataImporter/UpdateTrainingData(): Data does not exist, adding!"
            )
            this.trainingdata.setdefault(
                _outlineKey,
                [])  #If key does not exist, create one and add the data to it.
            this.trainingdata[_outlineKey].append(_data)
            this.WriteTrainingData()
            this.UpdateOutlinesWithTrainingData(outlines)
Ejemplo n.º 6
0
    def PopulateOutlinesDict(this):

        textout.SystemPrint(
            "DataImporter: Loading intent outlines from disk...")

        if os.path.exists(INTENT_PATH):
            fileDirectories = filter(lambda x: x[-4:] == '.txt',
                                     os.listdir(INTENT_PATH))
            for filename in fileDirectories:
                #strip and split ReadTxtFile at the same time.
                intentTextArray = [
                    x.strip().lower() for x in this.ReadTxtFile(
                        os.path.join(INTENT_PATH, filename)).split('\n')
                ]
                #Shovel each line of intentText into an outline entry
                for outlineRaw in intentTextArray:
                    phrases = [x.strip() for x in outlineRaw.split(' ')]
                    phraseWeight = []
                    phrasesCleaned = [
                    ]  #add version without the [] at the back of the phrase
                    #add phraseweight
                    for phrase in phrases:
                        if '[' in phrase and ']' in phrase:
                            #split the string by [ and ], by replacing ] with [, then split all by ['s
                            phraseSplit = phrase.replace(']', '[').split('[')
                            number = phraseSplit[1]
                            phrasesCleaned.append(
                                phraseSplit[0]
                            )  #add version without the [] at the back of the phrase
                            phraseWeight.append(float(number))
                        else:
                            #No [x] number found, putting default phraseweight as 1
                            phraseWeight.append(1)
                            phrasesCleaned.append(phrase)
                    this.AddOutline(filename.replace(".txt", ""),
                                    phrasesCleaned, phraseWeight)
            textout.SystemPrint("DataImporter: Intent outlines loaded!")
        else:
            textout.SystemWarning(
                "DataImporter: WARNING! Intent outlines folder is not found. Not loading any outlines!"
            )
        return this.outlines
Ejemplo n.º 7
0
def PassiveListening(this, callback):
    def returnfalse():  #hack to remove need for interrupt lmao
        return False

    detector = snowboydecoder.HotwordDetector(
        "/home/pi/Esther/resources/Esther.pmdl", sensitivity=0.5)
    # main loop, Passive Listening
    detector.start(detected_callback=callback,
                   interrupt_check=returnfalse,
                   sleep_time=0.03)
    textout.SystemPrint(
        "Stopped listening passively, SHOULD NOT PRINT UNLESS PROGRAM STOPPED")
Ejemplo n.º 8
0
    def PopulateEntitiesDict(this):
        entities = {}
        textout.SystemPrint("DataImporter: Loading entities from disk...")

        if os.path.exists(INTENT_PATH):
            fileDirectories = filter(lambda x: x[-4:] == '.txt',
                                     os.listdir(ENTITIES_PATH))
            for filename in fileDirectories:
                #strip and split ReadTxtFile at the same time.
                entitiesTextArray = [
                    x.strip().lower() for x in this.ReadTxtFile(
                        os.path.join(ENTITIES_PATH, filename)).split('\n')
                ]
                entityRequest = "!" + filename.replace(".txt", "")
                entities.setdefault(entityRequest, entitiesTextArray)

            textout.SystemPrint("DataImporter: Entities loaded!")
        else:
            textout.SystemWarning(
                "DataImporter: WARNING! Entities folder is not found. Not loading any entities!"
            )
        return entities
Ejemplo n.º 9
0
    def PopulateSynonymsDict(this):
        synonyms = {}
        textout.SystemPrint("DataImporter: Loading synonyms from disk...")

        if os.path.exists(SYNONYMS_PATH):
            fileDirectories = filter(lambda x: x[-4:] == '.txt',
                                     os.listdir(SYNONYMS_PATH))
            for filename in fileDirectories:
                #strip and split ReadTxtFile at the same time.
                synonymTextArray = [
                    x.strip().lower() for x in this.ReadTxtFile(
                        os.path.join(SYNONYMS_PATH, filename)).split('\n')
                ]
                #Shovel each line of synonymTextArray into a dict entry
                for dictEntry in synonymTextArray:
                    phrases = [x.strip() for x in dictEntry.split(':')]
                    synonyms.setdefault(phrases[0], phrases[1])
            textout.SystemPrint("DataImporter: Synonyms data loaded")
        else:
            textout.SystemWarning(
                "DataImporter: WARNING! Synonyms folder is not found. Not loading any synonyms!"
            )
        return synonyms
Ejemplo n.º 10
0
    def ProcessInput(this,_usrinput): #Returns a custom item. Refer to "return" at bottom of function

        usrinput = this.FormatUsrinput(_usrinput)

        #Create a dict for score sorting
        #Format:
        #scores[0] = "phrases together": (scoreValue, [(entityType)], [phrases], [phrasePos], usrinputlength, intentName)
        scores = {}

        #Iterate every word in user sentence
        for i in range(0,len(usrinput)):

            #if current user word matches keyword
            if usrinput[i] in this.outlines:

                #Iterate through all outlines within this starting phrase
                for nestedOutline in this.outlines.get(usrinput[i]):
                    textout.SystemPrint ("Recognized intent : " + str(nestedOutline))

                    #create tracker for which position each phrase appears in user's sentence, phasePos
                    phrasePos = [-1,] * len(nestedOutline[1])
                    this.SetPhrasePos(i, usrinput,nestedOutline, phrasePos)
                    extractedEntities = this.GetExtractedEntities(i, usrinput,nestedOutline, phrasePos)

                    #check if any phrasePos values are -1. Invalidate this entire outline if so.
                    if -1 in phrasePos:
                        textout.SystemPrint ("**Some phrase is not found in this outline: " + str(nestedOutline[1]) + " Skipping this outline**")
                        continue
                    textout.Print ("Phrase's position in user sentence: " + str(phrasePos))

                    #Calculating scores
                    #Take phraseWeight and apply below formula.
                    #If not the first phrase, do this: phraseBaseScore - ((currindex - previndex - 1) * distMod * phraseWeight)
                    #distMod will range from 0 (no penalty) to 1 (100% score penalty for each length away. 2 words means 200% penalty.)
                    #add all scores together
                    
                    outlineScore = this.CalculateOutlineScore(phrasePos, nestedOutline, len(usrinput))
                    scores.setdefault(this.CombineStringsList(nestedOutline[1]),(outlineScore,extractedEntities, nestedOutline[1], phrasePos, len(usrinput), nestedOutline[0]))

        textout.Print ("Final Results: " + str(scores))

        #Search for highest score
        highestKey = ""

        textout.Print ("---------------Sorting score--------------------")
        for key, value in scores.items():
            if highestKey == "":
                #First item in loop
                highestKey = key
                textout.Print ("First outline set: \"" + highestKey + "\" with values: "+ str(scores[highestKey]))
            else:
                if value[0] > 0.3: #Disregard any value below 0.3 score
                    #If number of phrases in value > number of phrases in highest key
                    if len(value[2]) > len(scores[highestKey][2]):
                        highestKey = key
                    #If value of this score is higher than the highest so far
                    elif value[0] > scores[highestKey][0]:
                        highestKey = key

        if highestKey != "":
            textout.SystemPrint ("Intent chosen: \"" + highestKey + "\" with values: "+ str(scores[highestKey]))
            #Update training data for matches.

            #scores[0] IS TEMPORARY. scores[0] == top probability. 
            #scores[x][2] = phrases | scores[x][3] = phrasePos  | scores[x][4] = usrinputlength 
            this.data.UpdateTrainingData(scores[highestKey][2], scores[highestKey][3], scores[highestKey][4], this.outlines)

            return (scores[highestKey][5],scores[highestKey][1]) #Returns: (intentName, [(entityType)])
        return None
Ejemplo n.º 11
0
    def CalculateOutlineScore(this, phrasePos, nestedOutline, usrinputlength):
        outlineScore = 0
        phraseWeight = nestedOutline[3]
        phrasePosDiffAvgSd = nestedOutline[2]
        slrAVG = nestedOutline[4]
        slrSD = nestedOutline[5]
        phrasePosDiff = [0,] * len(phrasePos)

        #Calculate [phrasePosDiff]
        #Convert [phrasePos] to [phrasePosDiff] e.g. [1,3,8] > [0,2,5]
        for i in range(1,len(phrasePos)): #index 0 is always value 0, so start loop from 1.
            phrasePosDiff[i] = phrasePos[i] - phrasePos[i-1]
        
        #Calculating phraseDistMod for each phrase
        for i in range(0,len(phraseWeight)):

            #Check if AVG and SD from training data exists
            if slrAVG is not -1:

                #Index 0: Only phraseweight
                #Index 1 onwards: Phraseweight and phraseDistMod (sd/avg)
                if i == 0:
                    textout.Print("----------First Phrase------------")
                    textout.Print ("old outline is: " + str(outlineScore)) 
                    textout.Print("phraseweight: " + str(phraseWeight[i]))
                    outlineScore = outlineScore + phraseWeight[i]
                    textout.Print ("result outline is: " + str(outlineScore)) 
                    textout.Print("----------------------")
                else:
                    textout.Print("----------Subsequent Phrase------------")
                    textout.Print ("phrasePosDiff is: " + str(phrasePosDiff[i]) )
                    textout.Print("phrasePosAvg: " + str(phrasePosDiffAvgSd[i][0]))
                    textout.Print("phrasePosSd: " + str(phrasePosDiffAvgSd[i][1]))
                    textout.Print("----------------------")
                    #phraseDistMod = abs(phrasePosDiff[i] - phrasePosDiffAvgSd[i][0]) / phrasePosDiffAvgSd[i][1]
                    #outlineScore = outlineScore + phraseWeight[i] * phraseDistMod

                    #How to use AVG and SD
                    #All values within the range AVG+SD : AVG-SD recieve 0 distance penalty.
                    #All values that fall outside that range will recieve penalty, starting from 0 up to infinity

                    if phrasePosDiffAvgSd[i][0] - phrasePosDiffAvgSd[i][1] <= phrasePosDiff[i] <= phrasePosDiffAvgSd[i][0] + phrasePosDiffAvgSd[i][1]:
                        textout.Print ("No penalty cos phraseposdiff is in range of the SDs") 
                        textout.Print ("old outline is: " + str(outlineScore))
                        textout.Print("phraseweight: " + str(phraseWeight[i]))
                        outlineScore = outlineScore + phraseWeight[i] #No penalty in range
                        textout.Print ("result outline is: " + str(outlineScore))
                        textout.Print("----------------------")
                    else:
                        #Calculate how far out of the range value is
                        amountOut = 0
                        if phrasePosDiff[i] > phrasePosDiffAvgSd[i][0]:
                            #If phraseposdiff is at the right side, bigger that AVG + SD
                            amountOut = phrasePosDiff[i] - (phrasePosDiffAvgSd[i][0] + phrasePosDiffAvgSd[i][1])
                        else:
                            #If phraseposdiff is at the left side, smaller that AVG - SD
                            amountOut = (phrasePosDiffAvgSd[i][0] - phrasePosDiffAvgSd[i][1]) - phrasePosDiff[i]

                        if phrasePosDiffAvgSd[i][1] != 0: #prevent divide by zero error if program saves repeated entries

                            #phraseDistMod = (SD - amountOut) / SD >> IF amountOut is smaller than SD (usually), returns value 1 to 0.00001
                            #IF (SD - amountOut) is <= 0 (-ve) (exceeds AVG + SD + SD range, very out-there value), oh ho ho big big penalty dude
                            if (phrasePosDiffAvgSd[i][1] - amountOut) > 0:
                                phraseDistMod = (phrasePosDiffAvgSd[i][1] - amountOut) / phrasePosDiffAvgSd[i][1]
                            else:
                                #penalty: put a minimum cap on how low the penalty goes, cos it'll go quite low
                                phraseDistMod = 0.01
                        else:
                            #If SD is 0, leave phraseDistMod as default 1.
                            phraseDistMod = 1
                            textout.SystemWarning("Uh-oh, a phrasePosSD has a value of 0. Assigning default value for phraseModDist.")
                            textout.SystemWarning("Please check training data for outline: " + str(nestedOutline[0]))

                        #apply penalty to the phrase then add it to outlinescore
                        textout.Print ("Apply penalty cos phraseposdiff is out of range of the SDs") 
                        textout.Print ("old outline is: "+ str(outlineScore))
                        textout.Print("phraseweight: "+ str(phraseWeight[i]))
                        textout.Print ("phraseDistMod is: "+ str( phraseDistMod))
                        outlineScore = outlineScore + phraseWeight[i] * phraseDistMod

                        textout.Print ("result outline is: "+ str(outlineScore))
                        textout.Print("----------------------")
            else:
                #No training data exists. Calculate according to distance away.
                 outlineScore = outlineScore + (phraseWeight[i] - (phrasePosDiff[i] * 0.06))
                 textout.Print ("NO TRAINING DATA. Doing default dist away calculations.")
                 textout.Print ("result outline is: " + str(outlineScore)) 
        #Calculating slrMod for entire outline
        textout.Print("----------Calculating SLR after phrases------------")
        textout.Print ("old outline is: " + str(outlineScore))
        
        slr = this.data.GetSumOfList(phrasePosDiff) / usrinputlength
        textout.Print("slr: " + str(slr))
        textout.Print("slrAVG: " + str(slrAVG))
        textout.Print("slrSD: " + str(slrSD))

        #If slr is out of SD range, apply penalty. If not, ignore and leave alone.
        if slrAVG - slrSD > slr > slrAVG + slrSD:

            #Calculate how much out of the range slr is
            amountOut = 0
            if slr > slrAVG:
                #If slr is at the right side, bigger that AVG + SD
                amountOut = slr - (slrAVG + slrSD)
            else:
                #If slr is at the left side, smaller that AVG - SD
                amountOut = slr - (slrAVG - slrSD)
            textout.Print("amountOut: " + str(amountOut))

            #slrMod = amountOut / SD * 100 | 10/10 useful comment
            slrMod = amountOut / slrSD * 100
            textout.Print("slrMod:  "+ str(slrMod))

            #Apply slrMod to entire outline
            outlineScore = outlineScore * slrMod
            textout.Print ("result outline is: " + str(outlineScore))
            textout.Print("----------------------")
        else:
            textout.Print ("No penalty cos slr is in range of the SDs") 

        textout.SystemPrint ("Score for this outline: " + str(outlineScore))
        return outlineScore
Ejemplo n.º 12
0
 def WriteTrainingData(this):
     textout.SystemPrint("DataImporter: Writing training data")
     with open(TRAIN_PATH, 'w') as fp:
         json.dump(this.trainingdata, fp, sort_keys=True)
     textout.SystemPrint("DataImporter: Writing data completed.")