Ejemplo n.º 1
0
def get_special_metrics(text):
    blob = TextBlob(text)
    main = {
        'statistics': {
            'syllables': textstat.syllable_count(text),
            'words': textstat.lexicon_count(text),
            'characters': textstat.char_count(text),
            'polysyllables': textstat.polysyllabcount(text),
            'average letter per word': textstat.avg_letter_per_word(text),
            'average sentence length': textstat.avg_sentence_length(text),
            'average sentence per word': textstat.avg_sentence_per_word(text),
            'sentences': textstat.sentence_count(text)
        },
        'difficulty': {
            'flesch reading ease': textstat.flesch_reading_ease(text),
            'smog index': textstat.smog_index(text),
            'flesch kincaid grade': textstat.flesch_kincaid_grade(text),
            'coleman liau index': textstat.coleman_liau_index(text),
            #'automated readability index': textstat.automated_readability_index(text),
            #'dale chall readability score': textstat.dale_chall_readability_score(text),
            #'difficult words': textstat.difficult_words(text),
            #'linsear write formula': textstat.linsear_write_formula(text),
            'gunning fog': textstat.gunning_fog(text)
        },
        'sentiments': {
            'polarity': blob.sentiment.polarity,
            'subjectivity': blob.sentiment.subjectivity
        }
    }

    return main
Ejemplo n.º 2
0
def get_special_metrics(text):
    blob = TextBlob(text)
    main = {
        "statistics": {
            "syllables": textstat.syllable_count(text),
            "words": textstat.lexicon_count(text),
            "characters": textstat.char_count(text),
            "polysyllables": textstat.polysyllabcount(text),
            "average letter per word": textstat.avg_letter_per_word(text),
            "average sentence length": textstat.avg_sentence_length(text),
            "average sentence per word": textstat.avg_sentence_per_word(text),
            "sentences": textstat.sentence_count(text),
        },
        "difficulty": {
            "flesch reading ease": textstat.flesch_reading_ease(text),
            "smog index": textstat.smog_index(text),
            "flesch kincaid grade": textstat.flesch_kincaid_grade(text),
            "coleman liau index": textstat.coleman_liau_index(text),
            #'automated readability index': textstat.automated_readability_index(text),
            #'dale chall readability score': textstat.dale_chall_readability_score(text),
            #'difficult words': textstat.difficult_words(text),
            #'linsear write formula': textstat.linsear_write_formula(text),
            "gunning fog": textstat.gunning_fog(text),
        },
        "sentiments": {"polarity": blob.sentiment.polarity, "subjectivity": blob.sentiment.subjectivity},
    }

    return main
Ejemplo n.º 3
0
def scores_cal_ori(text):

              char_count_value=textstat.char_count(text,ignore_spaces=True)
              lexicon_count_value=textstat.lexicon_count(text,removepunct=True)
              syllable_count_value=textstat.syllable_count(text)
              sentence_count_value=textstat.sentence_count(text)
              avg_sentence_length_value=textstat.avg_sentence_length(text)
              avg_syllables_per_word_value=textstat.avg_syllables_per_word(text)
              avg_letter_per_word_value=textstat.avg_letter_per_word(text)
              avg_sentence_per_word_value=textstat.avg_sentence_per_word(text)
              flesch_kincaid_grade_value=textstat.flesch_kincaid_grade(text)
              smog_index_value=textstat.smog_index(text)
              gunning_fog_value=textstat.gunning_fog(text)
              difficult_words_value=textstat.difficult_words(text)
              dale_chall_value=textstat.dale_chall_readability_score(text)
              polysyllab_value=textstat.polysyllabcount(text)
              return char_count_value,lexicon_count_value,syllable_count_value,sentence_count_value,avg_sentence_length_value,avg_syllables_per_word_value,avg_letter_per_word_value,avg_sentence_per_word_value,flesch_kincaid_grade_value,smog_index_value,gunning_fog_value,difficult_words_value,dale_chall_value,polysyllab_value
              return smog_index_value
Ejemplo n.º 4
0
 def stats(self, text):
     test_data = text
     stats = {}
     stats['flesch_reading_ease'] = textstat.flesch_reading_ease(test_data)
     stats['smog'] = textstat.smog_index(test_data)
     stats['flesch kincaid'] = textstat.flesch_kincaid_grade(test_data)
     stats['coleman Liau'] = textstat.coleman_liau_index(test_data)
     stats['automated'] = textstat.automated_readability_index(test_data)
     stats['dale chall'] = textstat.dale_chall_readability_score(test_data)
     stats['difficult'] = textstat.difficult_words(test_data)
     stats['linsear'] = textstat.linsear_write_formula(test_data)
     stats['gunning_fog'] = textstat.gunning_fog(test_data)
     stats['standard'] = textstat.text_standard(test_data)
     stats['charcount'] = textstat.char_count(test_data)
     stats['lexicon count'] = textstat.lexicon_count(test_data)
     stats['syllable count'] = textstat.syllable_count(test_data)
     stats['sentence count'] = textstat.sentence_count(test_data)
     stats['avg sentence length'] = textstat.avg_sentence_length(test_data)
     stats['avg_syllables_per_word'] = textstat.avg_syllables_per_word(
         test_data)
     stats['avg_letter_per_word'] = textstat.avg_letter_per_word(test_data)
     stats['avg_sentence_per_word'] = textstat.avg_sentence_per_word(
         test_data)
     return stats
Ejemplo n.º 5
0
    def __init__(self, path):
        """
        Create document instance for analysis.

        Opens and reads document to string raw_text.
        Textract interprets the document format and
        opens to plain text string (docx, pdf, odt, txt)

        Args:
            path (str): path to file to open, anaylze, close


        Public attributes:
        -user: (str) optional string to set username.
        -path: (str) relative path to document.
        -abs_path: (str) the absolute path to the document.
        -file_name:  (str) the file name with extension of document (base
        name).
        -mime:  tbd
        -guessed_type:  makes best guess of mimetype of document.
        -file_type:  returns index[0] from guessed_type.
        -raw_text:  (str) plain text extracted from .txt, .odt, .pdf, .docx,
        and .doc.
        -ptext:  (str) raw text after a series of regex expressions to
        eliminate special characters.
        -text_no_feed:  (str) ptext with most new line characters eliminated
        /n/n stays intact.
        -sentence_tokens:  list of all sentences in a comma separated list
        derived by nltk.
        -sentence_count:  (int) count of sentences found in list.
        -passive_sentences:  list of passive sentences identified by the
        passive module.
        -passive_sentence_count:  count of the passive_sentences list.
        -percent_passive:  (float) ratio of passive sentences to all sentences
        in percent form.
        -be_verb_analysis:  (int) sum number of occurrences of each to be verb
        (am, is, are, was, were, be, being been).
        -be_verb_count: tbd
        -be_verb_analysis: tbd
        -weak_sentences_all:  (int) sum of be verb analysis.
        -weak_sentences_set:  (set) set of all sentences identified as
        having to be verbs.
        -weak_sentences_count:  (int) count of items in weak_sentences_set.
        -weak_verbs_to_sentences:  (float) proportion of sentences with to
        be to all sentences in percent (this might not be sound).
        -word_tokens:  list of discreet words in text that breaks
        contractions up (default nltk tokenizer).
        -word_tokens_no_punct:  list of all words in text including
        contractions but otherwise no punctuation.
        -no_punct:  (str) full text string without sentence punctuation.
        -word_tokens_no_punct:  uses white-space tokenizer to create a list
        of all words.
        -readability_flesch_re:  (int) Flesch Reading Ease Score (numeric
        score) made by textstat module.
        -readability_smog_index:  (int) grade level as determined by the
        SMOG algorithum made by textstat module.
        -readability_flesch_kincaid_grade:  (int)  Flesch-Kincaid grade level
        of reader made by textstat module.
        -readability_coleman_liau_index:  (int) grade level of reader as made by
        textstat module.
        -readability_ari:  (int) grade leader of reader determined by
        automated readability index algorithum implemented by textstat.
        -readability_linser_write:  FIX SPELLING grade level as determined
        by Linsear Write algorithum implemented by textstat.
        -readability_dale_chall:  (int) grade level based on Dale-Chall
        readability as determined by textstat.
        -readability_standard:  composite grade level based on readability
        algorithums.
        -flesch_re_key:  list for interpreting Flesch RE Score.
        -word_count:  word count of document based on white space tokener,
        this word count should be used.
        -page_length:  (float) page length in decimal format given 250
        words per page.
        -paper_count:  (int) number of printed pages given 250 words per
        page.
        -parts_of_speech:  words with parts of speech tags.
        -pos_counts:  values in word, tag couple grouped in a list (Counter).
        -pos_total:  (int) sum of pos_counts values
        -pos_freq:  (dict) word, ratio of whole
        -doc_pages:  (float) page length based on 250 words per page
        (warning, this is the second time this attribute is defined).
        -freq_words:  word frequency count not standardized based on the
        correct word tokener (not ratio, just count).
        modal_dist:  count of auxillary verbs based on word_tokens_no_punct.
        sentence_count (int): Count the sentence tokens
        passive_sentences (list): List of all sentences identified as passive
        passive_sentence_count (int): count of items in passive_sentences
        be_verb_count (int): count "to be" verbs in text
        word_tokens_no_punct (list): words separated, stripped of punctuation,
         made lower case
        flesch_re_key (str): reading ease score to description
        freq_words (list or dict): frequency distribution of all words
        modal_dist (list): frequency distribution of aux verbs
        """
        self.user = ""
        self.path = path
        self.abs_path = os.path.abspath(self.path)
        if os.path.isfile(self.path):
            self.time_stamp = self.timestamp()
            self.file_name = os.path.basename(path)
            self.mime = MimeTypes()
            self.guessed_type = self.mime.guess_type(self.path)
            self.file_type = self.guessed_type[0]
            self.raw_text = textract.process(self.path, encoding="ascii")
            self.ptext = re.sub(u'[\u201c\u201d]', '"', self.raw_text)
            self.ptext = re.sub(u"\u2014", "--", self.ptext)
            self.ptext = re.sub(",", ",", self.ptext)
            self.ptext = re.sub("—", "--", self.ptext)
            self.ptext = re.sub("…", "...", self.ptext)
            self.text_no_feed = self.clean_new_lines(self.ptext)
            self.sentence_tokens = self.sentence_tokenize(self.text_no_feed)
            self.sentence_count = len(self.sentence_tokens)
            self.passive_sentences = passive(self.text_no_feed)
            self.passive_sentence_count = len(self.passive_sentences)
            self.percent_passive = (100 * (float(self.passive_sentence_count) /
                                           float(self.sentence_count)))
            self.percent_passive_round = round(self.percent_passive, 2)

            self.be_verb_analysis = self.count_be_verbs(self.sentence_tokens)
            self.be_verb_count = self.be_verb_analysis[0]
            self.weak_sentences_all = self.be_verb_analysis[1]
            self.weak_sentences_set = set(self.weak_sentences_all)
            self.weak_sentences_count = len(self.weak_sentences_set)
            self.weak_verbs_to_sentences = 100 * float(
                self.weak_sentences_count) / float(self.sentence_count)
            self.weak_verbs_to_sentences_round = round(
                self.weak_verbs_to_sentences, 2)
            self.word_tokens = self.word_tokenize(self.text_no_feed)
            self.word_tokens_no_punct = \
                self.word_tokenize_no_punct(self.text_no_feed)
            self.no_punct = self.strip_punctuation(self.text_no_feed)
            # use this! It make lower and strips symbols
            self.word_tokens_no_punct = self.ws_tokenize(self.no_punct)


            self.readability_flesch_re = \
                textstat.flesch_reading_ease(self.text_no_feed)
            self.readability_smog_index = \
                textstat.smog_index(self.text_no_feed)
            self.readability_flesch_kincaid_grade = \
                textstat.flesch_kincaid_grade(self.text_no_feed)
            self.readability_coleman_liau_index = \
                textstat.coleman_liau_index(self.text_no_feed)
            self.readability_ari = \
                textstat.automated_readability_index(self.text_no_feed)
            self.readability_linser_write = \
                textstat.linsear_write_formula(self.text_no_feed)
            self.readability_dale_chall = \
                textstat.dale_chall_readability_score(self.text_no_feed)
            self.readability_standard = \
                textstat.text_standard(self.text_no_feed)

            self.flesch_re_desc_str = self.flesch_re_desc(
                int(textstat.flesch_reading_ease(self.text_no_feed)))
            self.polysyllabcount = textstat.polysyllabcount(self.text_no_feed)
            self.lexicon_count = textstat.lexicon_count(self.text_no_feed)
            self.avg_syllables_per_word = textstat.avg_syllables_per_word(
                self.text_no_feed)
            self.avg_sentence_per_word = textstat.avg_sentence_per_word(
                self.text_no_feed)
            self.avg_sentence_length = textstat.avg_sentence_length(
                self.text_no_feed)
            self.avg_letter_per_word = textstat.avg_letter_per_word(
                self.text_no_feed)
            self.difficult_words = textstat.difficult_words(self.text_no_feed)
            self.rand_passive = self.select_random(self.passive_sentence_count,
                                                   self.passive_sentences)
            self.rand_weak_sentence = self.select_random(
                len(self.weak_sentences), self.weak_sentences)
            if self.word_tokens_no_punct:
                self.word_count = len(self.word_tokens_no_punct)
                self.page_length = float(self.word_count) / float(250)
                self.paper_count = int(math.ceil(self.page_length))
                self.parts_of_speech = pos_tag(self.word_tokens_no_punct)
                self.pos_counts = Counter(
                    tag for word, tag in self.parts_of_speech)
                self.pos_total = sum(self.pos_counts.values())
                self.pos_freq = dict(
                    (word, float(count) / self.pos_total)
                    for word, count in self.pos_counts.items())
                self.doc_pages = float(float(self.word_count) / float(250))
                self.freq_words = \
                    self.word_frequency(self.word_tokens_no_punct)
                self.modal_dist = self.modal_count(self.word_tokens_no_punct)
                # self.ws_tokens = self.ws_tokenize(self.text_no_cr)
                self.pos_count_dict = self.pos_counts.items()

            # Model - use for any pos
            self.modals = self.pos_isolate('MD', self.pos_count_dict)
            self.preposition_count = self.pos_isolate('IN',
                                                      self.pos_count_dict)
            self.adjective_count = self.pos_isolate_fuzzy(
                'JJ', self.pos_count_dict)
            self.adverb_count = self.pos_isolate_fuzzy('RB',
                                                       self.pos_count_dict)
            self.proper_nouns = self.pos_isolate_fuzzy('NNP',
                                                       self.pos_count_dict)
            self.cc_count = self.pos_isolate('CC', self.pos_count_dict)
            self.commas = self.char_count(",")
            self.comma_sentences = self.list_sentences(",")
            self.comma_example = self.select_random(len(self.comma_sentences),
                                                    self.comma_sentences)
            self.semicolons = self.char_count(";")
            self.semicolon_sentences = self.list_sentences(";")
            self.semicolon_example = self.select_random(
                len(self.semicolon_sentences), self.semicolon_sentences)
            self.lint_suggestions = lint(self.raw_text)
Ejemplo n.º 6
0
    def test_avg_sentence_per_word(self):
        avg = textstat.avg_sentence_per_word(self.long_test)

        self.assertEqual(0.05, avg)
Ejemplo n.º 7
0
def preprocess(x):
    print('PROCESSING ID: ' + str(x['id']))
    try:
        fvec = []
        fvec.append(int(x['id']))  # Append Article ID
        fvec.append(nnp_num(x['targetTitle']))
        if len(x['targetParagraphs']) > 0:
            fvec.append(
                ts.automated_readability_index(' '.join(
                    x['targetParagraphs'])))
            fvec.append(ts.avg_letter_per_word(' '.join(
                x['targetParagraphs'])))
            fvec.append(ts.avg_sentence_length(' '.join(
                x['targetParagraphs'])))
            fvec.append(
                ts.avg_sentence_per_word(' '.join(x['targetParagraphs'])))
            fvec.append(
                ts.avg_syllables_per_word(' '.join(x['targetParagraphs'])))
            fvec.append(ts.char_count(' '.join(x['targetParagraphs'])))
            fvec.append(ts.coleman_liau_index(' '.join(x['targetParagraphs'])))
            fvec.append(
                ts.dale_chall_readability_score(' '.join(
                    x['targetParagraphs'])))
            fvec.append(ts.difficult_words(' '.join(x['targetParagraphs'])))
            fvec.append(
                ts.flesch_kincaid_grade(' '.join(x['targetParagraphs'])))
            fvec.append(ts.flesch_reading_ease(' '.join(
                x['targetParagraphs'])))
            fvec.append(ts.gunning_fog(' '.join(x['targetParagraphs'])))
            fvec.append(ts.lexicon_count(' '.join(x['targetParagraphs'])))
            fvec.append(
                ts.linsear_write_formula(' '.join(x['targetParagraphs'])))
            fvec.append(ts.polysyllabcount(' '.join(x['targetParagraphs'])))
            fvec.append(ts.sentence_count(' '.join(x['targetParagraphs'])))
            fvec.append(ts.smog_index(' '.join(x['targetParagraphs'])))
            fvec.append(ts.syllable_count(' '.join(x['targetParagraphs'])))
            fvec.append(mean_wordlen(x['targetParagraphs']))
            fvec += ratio(x['targetParagraphs'])  #36
            fvec += ngram_feat(x['targetParagraphs'])  # 6
        else:
            fvec += [0] * 61
        if len(word_tokenize(' '.join(x['postText']))) > 0:
            fvec.append(max_wordlen(x['postText']))
            fvec.append(sw_ratio(' '.join(x['postText'])))
            fvec += ngram_feat(x['postText'])  #6
        else:
            fvec += [0] * 8
        fvec.append(len(word_tokenize(x['targetTitle'])))
        fvec.append(wlen_title(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'NNP'))
        fvec.append(int(num_start(x['targetTitle'])))
        fvec.append(in_num(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'VBZ'))
        fvec.append(pos_2gram(x['targetTitle'], 'IN', 'NNP'))
        fvec.append(wrb_num(x['targetTitle']))
        fvec.append(nnp_num(x['targetTitle']))
        fvec.append(int(wh_start(x['targetTitle'])))
        fvec.append(int(qm_exist(x['targetTitle'])))
        fvec.append(pos_thnn(x['targetTitle']))
        fvec.append(prp_count(x['targetTitle']))
        fvec.append(vbz_count(x['targetTitle']))
        fvec.append(pos_3gram(x['targetTitle'], 'NNP', 'NNP', 'VBZ'))
        fvec.append(pos_2gram(x['targetTitle'], 'NN', 'IN'))
        fvec.append(pos_3gram(x['targetTitle'], 'NN', 'IN', 'NNP'))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', '.'))
        fvec.append(pos_2gram(x['targetTitle'], 'PRP', 'VBP'))
        fvec.append(wp_count(x['targetTitle']))
        fvec.append(dt_count(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'IN'))
        fvec.append(pos_3gram(x['targetTitle'], 'IN', 'NNP', 'NNP'))
        fvec.append(pos_count(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'IN', 'NN'))
        if len(x['targetKeywords']) > 0 and len(x['postText']) > 0:
            fvec.append(kw_post_match(x['targetKeywords'], x['postText']))
        else:
            fvec += [0] * 1
        fvec.append(comma_count(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'NNS'))
        fvec.append(pos_2gram(x['targetTitle'], 'IN', 'JJ'))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'POS'))
        fvec.append(wdt_count(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'NN', 'NN'))
        fvec.append(pos_2gram(x['targetTitle'], 'NN', 'NNP'))
        fvec.append(pos_2gram(x['targetTitle'], 'NNP', 'VBD'))
        fvec.append(rb_count(x['targetTitle']))
        fvec.append(pos_3gram(x['targetTitle'], 'NNP', 'NNP', 'NNP'))
        fvec.append(pos_3gram(x['targetTitle'], 'NNP', 'NNP', 'NN'))
        fvec.append(rbs_count(x['targetTitle']))
        fvec.append(vbn_count(x['targetTitle']))
        fvec.append(pos_2gram(x['targetTitle'], 'VBN', 'IN'))
        fvec.append(pos_2gram(x['targetTitle'], 'JJ', 'NNP'))
        fvec.append(pos_3gram(x['targetTitle'], 'NNP', 'NN', 'NN'))
        fvec.append(pos_2gram(x['targetTitle'], 'DT', 'NN'))
        fvec.append(ex_exist(x['targetTitle']))
        fvec += ngram_feat(x['targetTitle'])  #6
    except Exception as e:
        print('EXCEPTION AT ID ' + str(x['id']))
        print(e)
        sys.exit()

    return fvec